
THE LEGAL PROTECTION AND USE OF OPEN
SOURCE COMPUTER PROGRAMS

by Krzysztof Siewicz

LL.M. LONG THESIS
PROFESSOR: György Boytha, LL.D.
Central European University
1051 Budapest, Nador utca 9.
Hungary

© Krzysztof Siewicz 2004
Permission is granted to make and distribute verbatim copies of this entire paper,

provided the authorship notice is preserved.

TABLE OF CONTENTS

List of Abbreviations..iii

Executive Summary...v

Introduction..1

Chapter 1 - Legal Protection and Use of Computer Programs in General.................................5

1.1 Computer Programs and Software Market..5
1.2 Copyright Protection of Computer Programs..8
1.3 Patent Protection of Computer Programs..14
1.4 Trade Secrets Protection of Computer Programs..19
1.5 Contract Law and Licensing of Computer Programs..19
1.6 Theory and Practice of Current System of Legal Protection...21

Chapter 2 - History and Present State of Open Source Software...27

2.1 UNIX...27
2.2 Free Software and Project GNU..30
2.3 Linux..31
2.4 Open Source Initiative...33
2.5 Various Open Source Projects...34

2.5.1 Apache HTTP Server...35
2.5.2 Mozilla Web Browser..36
2.5.3 OpenOffice.org Office Suite..37

Chapter 3 - Role of Law in Development of Open Source Software.......................................38

3.1 Free Software v. Open Source...38
3.2 Hackers' Culture..45
3.3 Open Source as Marketing Model...49
3.4 Model Open Source Licenses..52

3.4.1 GNU General Public License...53
3.4.2 BSD License..55
3.4.3 Apache Software License...56
3.4.4 Mozilla Public License..57
3.4.5 Sun Industry Standards Source License...59

3.5 Intellectual Property Rights Management in Open Source Movement.........................60
3.6 Evaluation of Role of Law in Development of Open Source Software.........................63

Chapter 4 - Legal Controversies of Open Source Licensing..66

4.1 Contract Law and Open Source Licensing..66
4.1.1 U.S. Case Law on Software Licensing..68
4.1.2 UCITA and Relevant European Union Directives...73
4.1.3 Applicability of Sales of Goods Laws...75

i

4.1.4 Implications for Open Source Licensing...79
4.2 Copyright Law and Open Source Licensing..81

4.2.1 Preemption...82
4.2.2 Copyright Misuse...90
4.2.3 Moral Rights..93

4.3 Possible Consequences of License Invalidity..94
4.3.1 First Sale..95
4.3.2 Fair Use..96
4.3.3 Implied Licenses..97
4.3.4 Liability for Open Source Software...100

4.4 Implications of “Copyleft” Infringement...104
4.5 Impact of Software Patents on Open Source Movement...105
4.6 Evaluation of Legal Controversies of Open Source Licensing....................................108

Conclusion..112

Bibliography...116

Table of Cases..123

ii

LIST OF ABBREVIATIONS

Apache License Apache Software License, Version 2.0

Art. Article

Berne Convention Berne Convention for the Protection of Literary and
Artistic Works (1886, Paris Act of 1971)

BSD Berkeley Software Distribution

BSDI Berkeley Software Design, Inc.

CISG UN Convention on Contracts for the International Sale of
Goods (Vienna Convention, 1980)

cl. clause

CLA Individual Contributor License Agreement (Apache)

CPU Central Processing Unit

E-Commerce Directive Directive on certain legal aspects of information society
services, in particular electronic commerce, in the
Internal Market (E-Commerce Directive), 2000/31/EC,
OJ L 178, 17/07/2000, P. 1

EPC European Patent Convention (1973)

EPO European Patent Office

et al. et alia (and others)

et seq. et sequens (and following)

etc. et cetera (and so on)

EU European Union

EULA End-User License Agreement

European Software Directive Directive on the legal protection of computer programs,
91/250/EEC, OJ L122, 17/05/1991 P. 42

FAQ Frequently Asked Questions

FFII The Foundation for Free Information Infrastructure

FSD Free Software Definition

FSF Free Software Foundation, Inc.

FTP File Transfer Protocol

GNU GNU is Not Unix

GNU GPL GNU General Public License, Version 2.0

GNU LGPL GNU Lesser General Public License, Version 2.1

HTTP Hyper-Text Transfer Protocol

Id. Idem (thereto)

iii

JCA OpenOffice.org Open Source Project Joint Copyright
Assignment by Contributor

MIT Labs Massachusetts Institute of Technology, Artificial
Intelligence Laboratories

MPL Mozilla Public License, Version 1.1

NCSA National Center for Supercomputing Applications

No. Number

OJ Official Journal

OSD Open Source Definition

OSI Open Source Initiative

OSRM Open Source Risk Management

R&D Research and Development

RAM Random Access Memory

Rome Convention Convention on the Law Applicable to Contractual
Obligations (1980)

Sec. Section

SISSL Sun Industry Standards Source License, Version 1.1

Software Patents Directive Proposal for the Directive on the patentability of
computer-implemented inventions, 6580/02 PI 10
CODEC 242

TRIPS WTO Agreement on Trade-Related Aspects of
Intellectual Property Rights (TRIPS) (1994)

U.S. The United States of America

UCC Uniform Commercial Code

UCITA Uniform Computer Information Transactions Act

UK The United Kingdom

UNCITRAL United Nations Commission on International Trade Law

Unfair Terms Directive Directive on unfair terms in consumer contracts,
93/13/EEC, OJ L 095, 21/04/1993 P. 29

USL Unix System Laboratories

Vol. Volume

WIPO World Intellectual Property Organization

WTO World Trade Organization

iv

EXECUTIVE SUMMARY

The paper deals with the question of the relation between Open Source computer

programs and law on both the theoretical and practical level. The methodology used was to

examine legal aspects of computer programs in general in order to estimate the specific issues

triggered by Open Source Software in this area. Technical, economic and social aspects of

software production were also analyzed. The research encompassed primary and secondary

sources of law of the U.S. and EU, non-legal authoritative writings and consultations with

experts.

The main areas discussed, in order of appearance, are the general means of

protecting computer programs, the theoretical grounds for this system and the ways it is used

in practice. Then, the history and some details of technical side of Open Source computer

programs is presented together with the social and economic aspects of Open Source

Movement. All this research is put together and the essence of the legal system designed by

the movement is discussed against the background of general protection. In the end, this

system is analyzed by confronting its institutes with the laws of particular jurisdictions.

The key finding of the paper is that the legal protection and use of Open Source

computer programs form an innovative and remarkable system, which is in-line with the

theory of intellectual property law even though its use of the law is the opposite of the trend

known as “proprietary licensing”. Although most of the Open Source legal innovations are

generally valid and enforceable, much depends on the interpretation given in particular

jurisdictions. The finding of the detailed analysis is that there is a need of more diligence in

arranging legal relationships between parties involved in the creation and use of Open Source

Software.

v

INTRODUCTION

The development of Open Source computer programs has gained much attention of

all the players in the software market. Not only individual users and programmers but also

major software development and hardware manufacturing companies together with public

administration worldwide are seeking ways to take advantage of this phenomenon and to use

it for their diverse ends. Indeed, it proves to be an extraordinary way of organizing the

production in the Information Age, having its own rich history, underlying ideology and

social institutions. But what is of prior importance for the purposes of this paper, Open

Source development has been based on a specific legal system, the features of which deserve

special analysis against the background of the legal framework for the protection of software

the lawyers have been used to.

Apart from a plethora of pragmatic arguments,1 which make the legal protection and

the use of Open Source computer programs worth researching and producing academic

dissertations, thus contributing to its general understanding and legal certainty, there are even

more appealing theoretical questions posed by this social phenomenon. First and foremost, all

the innovations in the field of law must face the question of their validity and enforceability.

This issue has come under the attention of some legal scholars2 and has even been put before

the courts in a few jurisdictions recently.3 Thus, there are more and more sources identifying

the possible legal consequences of developing software under Open Source model, which by

now include issues of copyright, contract or constitutional law, but their list and final

1 Various Open Source Software products hold a significant market share. The scale and organization of Open
Source Movement is an outstanding social phenomenon. Various leading companies worldwide contribute
or participate in Open Source production. National governments and international institutions promote the
development of Open Source Software.

2 See e.g. Moglen, FN 120 and 121, Rosen, FN 213 or Metzger & Jaeger, FN 229.
3 See FN 155.

1

interpretation is far from being complete. Apart from the need to add to this detailed analysis,

the legal research of Open Source development requires to take a look at it from a distance

and ask some important general questions about the system for the protection of intellectual

property. These issues have been considered to the greatest extent by the originators of Open

Source Movement,4 mostly non-lawyers, but some prominent legal scholars5 have also been

addressing the matter. Here, the debate may be considered even more heated and far from

being resolved.

The purpose of this paper is to contribute to both of these discussion threads.

Namely, some of the most interesting and crucial legal issues concerning particular Open

Source projects and their licenses are looked upon in order to evaluate the impact of the

current legal system on their development. At the same time the paper analyzes how Open

Source phenomenon influences the theory of intellectual property protection. Thus, the

purpose is to observe, analyze and comment on the reciprocal relation between Open Source

Movement and law.

The position to the topic is that the legal system designed to protect and allow for the

use of Open Source computer programs complies with the theory of intellectual property

laws. Another major finding of this paper is that given the success of Open Source

Movement, the law as used by them is sufficient and calls for stronger protection should not

be followed blindly. As to the specific findings, they may be summarized that black letter

laws protect the legal model designed by Open Source licensors by holding it valid and

enforceable to a great extent. There are some reservations flowing from the fact that the

participants in Open Source Movement use the law in a specific way, which does not always

4 See e.g. DIBONA ET AL, FN 65, STALLMAN, FN 92 or Perens, FN 254.
5 See e.g. LESSIG, FN 65.

2

comply with particular regulations and should therefore exercise more diligence in this area.

These specific findings encompass issues related to contract formation, the scope of rights

and obligations of the users and liability of licensors.

The methodology of the research for this paper was as follows. Some studies of the

technical, economic and social background for Open Source Movement were conducted in

order to understand the subject matter better, realize how exactly it differs from other

software production models and what are the special features of its end-products. Moreover,

the legal system for the protection of software in general was analyzed for the same purpose

of identifying particular Open Source-specific issues. The research was conducted on the

primary and secondary sources of law of the two big economies of the World – the U.S. and

EU as well as the writings of various non-legal practitioners. Diverse methods of collecting

research material were used, such as searching the libraries, Internet or consulting with legal

and technical experts.

In the course of the research, the following structure of the paper was elaborated.

The first Chapter provides the necessary background by presenting the general rules for the

protection and use of computer programs. Since Open Source has been much in the

opposition to the system that in this paper is referred to as “proprietary”, this model is also

described in the first Chapter. Thus, it shows what the starting point is before deciding

whether to opt for the proprietary or Open Source approach, the rationale of those who

choose the former and the effect of such decision. The second Chapter presents the history

and the actual state of Open Source Software, in order to familiarize the reader with basic

terms and names used extensively later on. The purpose of the third Chapter is to estimate the

role of law in the development of Open Source Software. It discusses the rationale and

3

ideology of all the parties to Open Source Movement and explains what interests are at stake,

what theories are used or are likely to be used to support them. Thus, the second and third

Chapters together show what exactly makes the difference between proprietary and Open

Source software and also confront the latter with the theory of intellectual property laws. The

fourth Chapter contains detailed analysis of various legal controversies resulting from Open

Source Software development, as its purpose is to find out whether the law can indeed

enforce the system for the protection designed by Open Source licensors. This issue is also

analyzed against the background of general legal system for the protection of computer

programs.

4

CHAPTER 1 - LEGAL PROTECTION AND USE OF COMPUTER PROGRAMS IN GENERAL

1.1 Computer Programs and Software Market

A computer program is an algorithm, that is a set of instructions serving the purpose

of solving a given task, expressed in one of the programming languages understandable to a

computer and capable of being executed by it. This is not a legal definition and the

understanding of computer program in legal systems varies. Some national laws do not

include any definition, thus forcing courts and other institutions to rely on the current

development of the computer sciences. On the other hand, some definitions are designed in a

quite elaborate way, such as the one from the WIPO Model Provisions stating that computer

program is

a set of instructions, which can, once transcribed on a medium decodable by a

machine, make indicate, accomplish or obtain a particular function, task or result by

a machine capable of treating information.6

Sec. 101 of the U.S. Copyright Act defines computer program as a “set of statements

or instructions to be used directly or indirectly in a computer in order to bring about a certain

result”.7 There is no definition in the Directive on the legal protection of computer programs

(European Software Directive)8 but the Directive Proposal intended to encompass by the

word “program” “the expression in any form, language, notation or code, of a set of

instructions the purpose of which is to cause a computer to execute a particular task or

function”.9

Computer programs may be expressed, generally speaking, in two forms: source

6 WIPO Model Provisions on the Protection of Computer Software (1978).
7 Copyright Act Sec. 101, 17 U.S.C. Sec. 101 (1976, as amended).
8 91/250/EEC, OJ L122, 17/05/1991 P. 42.
9 COM (88) 816 final – SYN 183 [1989] OJ C91/9, as cited by: Estelle Derclaye, Software Copyright

Protection: Can Europe Learn from American Case Law? Part 1, 1 EUROPEAN INTELLECTUAL PROPERTY REVIEW

10 (2000).

5

code and object code. A source code is a transcript in one of the high-level programming

languages, such as C or Java. These languages are understandable to human beings and are

used for writing and modifying (debugging, updating) programs. An object code, also

referred to as a binary, is a translation of source code into a machine-readable string of 0s and

1s, prepared with the help of special compiler programs. The object code is practically

impossible to be understood by a human; but, as computers directly understand only the

object code, programs must always be translated (compiled) into it in the end. When the

program is finished it is possible to distribute it in the object code only, as it is sufficient for

the purpose of running it on a computer.

A computer program, expressed in either of the two forms of code, together with

some additional elements constitutes software, as opposed to hardware, usually referring to

tangible electronic equipment. These elements generally fall into one of the following

categories: (1) software development tools; (2) preparatory design material; (3) input data; (4)

program output; (5) additional materials (e.g. manuals, help modules); (6) interfaces

(including, but not limited to graphical on-screen presentation, the “look and feel” of

program).10 Similarly to the source code, software development tools and preparatory design

material are important only during the creation of the program, thus they are usually not

marketed together with it. Conversely, last four elements, together with the program in object

code usually form software in the sense of product that is being offered to end users.

Software differs from traditional tangible goods in a number of ways, apart from the

most obvious difference that it is pure information and the form of its fixation is not so much

important. For example, it is usually not expected from software to work properly as a

10 Compare with: DAVID BAINBRIDGE, SOFTWARE COPYRIGHT LAW, 1-3 (Butterworths, London, Edinburgh, Dublin,
4th ed., 1999).

6

finished end-product. It is common for it to contain mistakes (bugs) resulting from the fact

that it is virtually impossible even for most diligent developers to predict all situations that

may occur in the computer during the use of program. Usually, after the official release of

software and appearance of bugs, additional files (patches) are introduced that fix these

mistakes. It is also common for developers to work constantly on and market new versions

(upgrades) of software, which extend its functionability. This is the result of a rapid

development in all the fields of Information Technology together with the ideological

approach in the industry, which does not require working to achieve any final result but rather

to constantly improve. Consequently, “the life” of a particular computer program is extremely

short (especially in comparison to the length of the copyright or patent protection term) and

new versions are introduced in short cycles.

Additionally, the software market is susceptible of “network effects”. Because of

technical reasons such as compatibility and interoperability requirements, together with

simple habituation of users to certain solutions, the value of a computer program as perceived

by its users increases every time when additional users choose this particular program.11 With

the increase of the number of users, switching costs raise. In the end, they may prevent

consumers from abandoning one product and its vendor even if others are objectively better.

Another characteristic of computer programs and software is that although they are

quite expensive to create, they can be multiplied and distributed at practically no costs. This

is a feature common to virtually all types of intellectual property, but in the case of software

it becomes extremely apparent. The process of creation is lengthy, involves a lot of testing,

rewriting and, especially in the case of special-purpose software, consultation with experts in

11 F. Warren-Boulton et. al., Economics of intellectual property protection for software: The proper role for
copyright, 3 No. 2 STANDARD VIEW 68-78 (June 1995).

7

many fields. However, thanks to digital technology and because programs are by their very

nature digital, not only can they be copied instantly with the use of minimal expertise and

equipment but such copies are practically indistinguishable from originals. Thus,

uncontrolled copying would allow many people to benefit from the use of practically the

same program, without detracting from this use owners of original. Such free-riding is indeed

extremely difficult to control. Obviously, the fact that programs written with a lot of effort of

their authors could be copied and used free of charge by unauthorized free-riders, who would

receive the same quality product as individuals paying the full fee, has had a strong influence

on the system of software legal protection.12

This system consists mainly of copyright law. To some extent trade secrets

protection is used and, especially recently, patent protection is gaining growing interest.

Software licensing agreements form the most significant element of the system, giving rise

not only to copyright but also to many contract law concerns. All these will be separately

described in the following sections to give the reader a general overview of software legal

issues before discussing matters specific to Open Source.

1.2 Copyright Protection of Computer Programs

One of the major benefits of copyright law is the protection against unauthorized

copying. However, it was not clear from the very beginning whether computer programs are

copyrightable. Out of many features distinguishing programs from works traditionally

covered by copyright law two can be brought under consideration, as pointed out by Drexl:

utilitarian character and the lack of communicative purpose.13 Computer programs do not

12 It should be kept in mind that apart from the legal protection, software distributors widely use technical
means that physically prevent unauthorized copying or other unwelcome access of the users.

13 JOSEPH DREXL, WHAT IS PROTECTED IN A COMPUTER PROGRAM?: COPYRIGHT PROTECTION IN THE UNITED STATES AND

EUROPE, 9-12 (VCH Verlagsgesellschaft mbH, Weinheim, New York, 1994).

8

serve an aesthetic or even educational purpose. They are intended to be just a set of

instructions serving an useful (utilitarian) end of accomplishing a task.14 Moreover, although

computer programs may be understood by skilled individuals, they are not written in order to

communicate with humans. Their real purpose is to make computers produce certain results.

The result of a program, being referred to by some prominent authors as its “behavior”,15 is

the source of its value. The same result may be accomplished by many different expressions

of program (source and object codes); thus, a particular expression of the program is not so

important as it is the case with traditionally copyrighted works.

Although these and some other special features may be considered in the discussion

whether copyright law is fit for the protection of computer programs, neither the purpose of a

work nor the reason why it is considered valuable have to be analyzed in order to decide

whether it is copyrightable. In fact, there are numerous utilitarian works that have benefited

from copyright protection long before computer programs. Copyright laws, generally

speaking, only require the work to be original and this standard is usually set at a very low

level, such as the one given in American case Feist Publications, Inc. v. Rural Telephone

Service Co., Inc.: “[o]riginal means ... that the work was independently created by the

author ... and that it possesses at least some minimal degree of creativity”.16 In Europe,

according to the Software Directive the program is original if it is the author’s own

intellectual creation. This definition, although vague and subject to different interpretations

by Member States, in any case is believed to be in-line with the American “minimal degree of

14 It is true even with regard to game or educational software, as computer programs are not a game or
education themselves, they just constitute an algorithm for a computer to provide fun or information to the
end users.

15 Pamela Samuelson et. al., A Manifesto Concerning The Legal Protection Of Computer Programs, COLUMBIA

LAW REVIEW, December 1994, at 2308, 2316 et seq.
16 Feist Publications, Inc. v. Rural Telephone Service Co., Inc. 111 S. Ct 1282, 18 U.S.P.Q 2d 1275 (1991).

9

creativity” test of Feist.17 Therefore, one may say that virtually all computer programs can

easily fulfill copyrightability requirements.18

Computer programs are subject to copyright protection guarded by such international

treaties as the WIPO Copyright Treaty (1996) or Agreement on Trade-Related Aspects of

Intellectual Property Rights (TRIPS) (1994). The former protects computer programs as

literary works within the meaning of Art. 2 of the Berne Convention for the Protection of

Literary and Artistic Works (Berne Convention), regardless of their mode or form of their

expression.19 Similarly, TRIPS Art. 10.1 obliges its signatories to protect computer programs

as literary works under the Berne Convention, whether they are in the source or the object

code. This express wording may be interpreted as the effect of discussion, whether the object

code, usually prepared by compiler programs without any human interference is an

expression eligible for protection.

At the national level, although a sui generis protection was considered at first, in the

end the existing framework of copyright law was chosen. The U.S. amended its Copyright

Act in 1980 to extend the protection to computer programs followed shortly by Japan and the

European Software Directive later on in 1991. Therefore, the international agreements just

mentioned confirmed only the practice of most advanced economies and reassured common

standards for the rest of the world.

In the U.S. the protection of computer programs extends both to the source code (by

“statements” and “indirect use” wording of Copyright Act Sec. 101 definition) and the object

17 Estelle Derclaye, Software Copyright Protection: Can Europe Learn from American Case Law? Part 1, 1
EUROPEAN INTELLECTUAL PROPERTY REVIEW 10, 15-16 (2000).

18 BAINBRIDGE, FN 10 at 12.
19 Art. 4 of the WIPO Copyright Treaty. The Treaty is a special agreement within the meaning of Art. 20 of the

Berne Convention.

10

code (by “instructions” and “direct use” wording).20 The scope of the copyright protection is

limited by Sec. 102(b), which excludes ideas, procedures, processes, systems, methods of

operation, concepts, principles or discoveries. There is; however, no positive enumeration of

protected elements and the general copyright law rule applies extending protection to

expressions of ideas (forms in which authors create their work), not to the ideas themselves.21

There are two main categories of elements of computer programs: literal and non-

literal. The copyright protection of literal elements, the textual expression of the program in

the form of source or object code has been admitted by the U.S. courts without much ado.22

As to non-literal elements, such as programs’ structure, sequence, organization, screen

displays, general flow charts, and menu structures, the courts have designed four distinct tests

all based on the “idea-expression dichotomy”.23 Applied to computer programs, they result in

granting protection to non-literal elements as long as they can be regarded expressions of

ideas, not the ideas themselves.24

It is believed that the “abstraction-filtration-comparison” test developed in

Computer Associates, Inc. v. Altai, Inc.25 takes precedence, although none of the previous

20 Derclaye, FN 17 at 11.
21 DIANE ROWLAND, ELIZABETH MACDONALD, INFORMATION TECHNOLOGY LAW, 29 (Cavendish Publishing Ltd,

London, Sydney, 2nd ed., 1997).
22 Williams Electronics, Inc. v. Artic International, Inc. 685 F.2d 870 (3d Cir. 1982); Whelan Associates, Inc.

v. Jaslow Dental Laboratory, Inc. 797 F 2d 1222 (3d Cir. 1987); CMS Software Design Sys., Inc. v. Info
Designs, Inc., 785 F.2d 1246 (5th Cir. 1986); Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d
1240 (3d Cir. 1983), cert. dismissed, 464 U.S. 1033 (1984)

23 Julian Velasco, The copyrightability of non-literal elements of computer programs, COLUMBIA LAW REVIEW,
January 1994, at 242 (citing: Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc. 797 F 2d 1222 (3d
Cir. 1987); Lotus Development Corp. v. Paperback Software Int. 740 F. Supp. 37 (D. Mass. 1990); Brown
Bag Software, Inc. v. Symanthec Corp. 960 F 2d 1465 (9th Cir 1992); Computer Associates, Inc. v. Altai,
Inc. 982 F 2d 693 (2nd Cir. 1992)). There are commentators; however, who see in some of these cases an
evolutionary development of the same test. See Arthur R. Miller, Copyright protection for computer
programs, databases, and computer-generated works: is anything new since CONTU?, 106 HARVARD LAW

REVIEW 977 (1993).
24 Velasco, FN 23 at 253.
25 982 F 2d 693, 706 (2nd Cir 1992).

11

tests has been expressly overruled so far.26 The abstraction phase consists of breaking down

the scrutinized program into its levels of abstraction.27 Then, each part is “filtered” separately

in the search for copyrightable material by taking away incorporated ideas, incidental

expression (merger, scenes a faire), and the public domain.28 What is left is compared, in the

comparison phase, with the structure of the program in order to determine substantial

similarities.29 The court examines not only whether the defendant copied a protected

expression, but also takes under account the relative importance of the copied element in

relation to the program.30

The Altai test is by far most detailed and sophisticated. It is also a very strict one,

which effects in not granting copyright protection for non-literal elements in every case.

Applying the Altai criteria, much of them may be copied to another program and still not

amount to copyright infringement. However, the Altai court noted that remedies may be

sought in trade secret law – “an appropriate means by which to secure compensation for

software espionage”31 or patents “with [their] exacting up-front novelty and non-obviousness

requirements, [which] might be the more appropriate rubric of protection.”32

Copyright protection for computer programs in Europe is granted in national laws. In

1991, the European Communities introduced European Software Directive, which requires in

Art. 1.1 that the member states protect computer programs as literary works within the

meaning of Berne Convention. Similarly to the U.S. Copyright Act, the directive also relies

26 Velasco, FN 23 at 243; D. S. Karjala, Recent United States and International Development in Software
Protection, Part 1, 1 EUROPEAN INTELLECTUAL PROPERTY REVIEW 13 (1994), Part 2, 2 EUROPEAN INTELLECTUAL

PROPERTY REVIEW 58 (1994).
27 982 F 2d 693, 707 (2nd Cir 1992).
28 Id. at 706.
29 Id.
30 Id. at 710.
31 Id. at 721.
32 Id.

12

on idea-expression dichotomy and its Art. 1.2 excludes from protection “[i]deas and

principles which underlie any element of a computer program, including those which underlie

its interfaces”. Recital 14 adds “to the extent that logic, algorithms and programming

languages comprise ideas and principles, those ideas and principles are not protected”. There

is no elaborate exclusion, such as Sec. 102(b) of the Copyright Act but the directive explicitly

mentions preparatory design material (Art. 1.1) and codes (Recital 7) as protected. According

to Derclaye, the directive also grants protection to user interfaces, though impliedly, in

Recital 10 and the Proposal referred to sub-programs routines and modules as protected

independently.33 The directive clarifies further, that the protection is granted regardless of

form in which programs are expressed.34 Therefore, all literal elements (both source and

object codes) are protected. Non-literal elements can receive protection only to the extent that

they finally permit the building of a computer program.35 Thus, their protection may be, like

in the U.S., regarded as relatively weak.

The questions of exact scope of copyright protection, whether it covers non-literal

elements of program or other items constituting software, though still not finally resolved, are

not specific with regard to the very subject of this paper. It is only important to have in mind

that copyrightability of Open Source programs involves all these abovementioned

considerations. On the other hand, reverse engineering and decompilation are usually

discussed among most important issues concerning the scope of copyright protection of

computer programs. These are techniques used, for example, to assure compatibility and

interoperability of a program being developed with other programs that are going to be used

33 Derclaye, FN 17 at 14.
34 Recital 7: “... any form, including those which are incorporated into hardware; ... also ... preparatory design

work ...”; Art 1.1 repeats the inclusion of preparatory design material.
35 Derclaye, FN 17 at 11 (relying on the wording of Recital 7).

13

in the same computer. The extent to which non-copyright holders are allowed to reverse

engineer or decompile programs does not have to be addressed in this paper. It is true that one

may attempt to decompile an Open Source computer program, for example to make sure it

indeed comes from the source code supplied together with it, but this is not such a dividing

issue as with regard to proprietary programs.

1.3 Patent Protection of Computer Programs

In comparison with copyright, patent protection seems to be more beneficial towards

the intellectual property holder. Copyright, especially in the light of difficulties in extending

it over non-literal elements, does not fully protect the value of software, most of which lies

not in a particular expression used in the code of computer program but in what it does and in

its embodied idea. Thus, attempts to secure patent protection for software are understandable,

as patents are tailored to protect functionality. Moreover, as pointed out by Nichols, two main

advantages of patent over copyright are that the former protects the holder against similar or

even equivalent (interchangeable) inventions and additionally against independent creations

because it allows preventing others from using patented products even if made completely on

their own.36 Copyright protects expression (form of the work), whereas patent may be granted

for the practical application of innovative ideas effecting in a product or process, so they were

traditionally perceived as excluding each other.37 Odd as it is for other types of works covered

by copyright, computer programs may quite often additionally indirectly benefit from patent

protection, to the extent they form a part of a product or process claimed to be an invention.

More precisely, software often constitutes an element of an invention consisting of some

36 KENNETH NICHOLS, INVENTING SOFTWARE: THE RISE OF “COMPUTER-RELATED” PATENTS, 3 (Quorum Books, Westport,
1998).

37 IAN J. LLOYD, INFORMATION TECHNOLOGY LAW, 308 (Butterworths, London, Edinburgh, Dublin, 2000, 3rd ed.).

14

“functional interrelation between technical components of a system, e.g. the architecture of a

processor and the particular way of processing data in such a processor.”38

Because the border lines in such approach are blurred, controversies arising from

allowing software patents are by far higher than those that have resulted from extending

copyright protection over computer programs. Some vague legal guidelines for software

patentability may already be found on an international level, within the framework of WTO

in TRIPS Art. 27 providing for a general obligation to grant patents in all fields of

technology, which “is largely taken to encompass software, when used to solve a technical

problem”39, partially in the light of Arts. 27(2) and 27(3) which do not mention software as

capable of being excluded from patentability.40 On the other hand; as Tripathi and others

rightly point out, patenting things that do not meet general patentability requirements and are

not inventions is not the objective of TRIPS, although Art. 1 allows to establish a more

extensive protection than the one provided for by the agreement.41

In the U.S., which is one of the TRIPS signatories, as of 2000, there have been over

40,000 software patents and the number has been growing by few thousand every year.42 For

the time being, the ruling decision in the American debate on software patentability has been

State Street Bank & Trust v. Signature Financial Services,43 where the Court of Appeals for

38 Yannis Skulikaris, Software-Related Inventions and Business-Related Inventions; A review of practice and
case law in U.S. and Europe, PATENT WORLD, February 2001, at 26.

39 Id. at 27 (2001).
40 Daniele Schiuma, TRIPS and Exclusion of Software “as Such” from Patentability, No.1 Vol. 31 IIC

INTERNATIONAL REVIEW OF INDUSTRIAL PROPERTY AND COPYRIGHT LAW 36, 40 (2000).
41 R C Tripathi et al., Patenting of Computer Software: Status and Approach, Vol. 7 JOURNAL OF INTELLECTUAL

PROPERTY RIGHTS 128, 129 (2002), adding that in the early 90s, when TRIPS was drafted and discussed
software was mostly considered not to constitute inventions but algorithms, at best just discovered (Id. at
130)

42 Peter Toren, Software and Business Methods are Patentable in the U.S. (Get over it), PATENT WORLD,
September 2000, at 7.

43 State Street Bank & Trust v. Signature Financial Services, 149 F.3d 1368 (Fed. Cir. 1998), cert. denied, 119
S.Ct. 851 (U.S. Jan 11, 1999).

15

the Federal Circuit was presented with a computerized algorithm for managing an investment

fund structure and held that it constitutes a patentable subject matter,44 which should be

evaluated under the usual test of usefulness, novelty and non-obviousness.45 According to

Ogden, although the earlier case law could have led some to believe that physicality of an

invention in the sense of transformation of a tangible article to a different state is the

necessary condition of patentability, State Street Bank clarifies that it is not, at least not any

longer.46 The court; however, did set the limit – it is not the physicality, but the usefulness of

an algorithm. Thus, “merely abstract ideas constituting disembodied concepts or truths that

are not 'useful'”47 are not patentable.

In Europe, the European Patent Convention of 1973 (EPC) excludes computer

programs from the understanding of inventions in Art. 52(2)(c).48 However, pursuant to Art.

52(3), patentability is excluded only to the extent to which an application relates to computer

program “as such”.49 “Clearly, the interpretation of [as such] is a key issue in determining the

patentability or otherwise of inventions in which the inventive step falls within a computer

program.”50 It has been suggested that the ratio legis of Art. 52(3) was not to exclude

patenting of computer programs absolutely and unconditionally.51 In any case, the

interpretation given by European Patent Office (EPO) seems not to be too restrictive; as of

now (2004) already 30,000 software patents have been granted by EPO and the number has

44 Christopher L. Ogden, Patentability of Algorithms After State Street Bank: The Death of the Physicality
Requirement, No. 10 Vol. 82 JOURNAL OF PATENT AND TRADEMARK OFFICE SOCIETY 721, 722 (2000).

45 Toren, FN 42 at 8.
46 Ogden, FN 44 at 724 et seq.
47 149 F.3d 1368, 1373.
48 European Patent Organization is not a signatory of TRIPS, though most of its members are.
49 In fact, there are doubts whether the “as such” exception is allowed by TRIPS. Certainly, no TRIPS

obligations apply to EPO and there is no direct obligation for TRIPS signatories to bring EPC in line with it.
See Schiuma, FN 40 at 45 and 50 (2000).

50 ROWLAND & MACDONALD, FN 21 at 68.
51 Skulikaris, FN 38 at 27.

16

been growing by 3,000 every year.52

Relying on the case law of Appellate Body, EPO searches the applications

containing claims directed at computer programs for technical effect when analyzing whether

they constitute a patentable subject matter. This is because the exception of EPC Art. 52(3)

has been generally understood as excluding non-technical items from the understanding of

“invention”. To pass the test for patentability, “technical effect” has to go beyond mere

interaction between hardware and software.53 According to the current Guidelines of EPO,

such “further technical effect” may be found

in the control of an industrial process or in processing data which represent physical

entities or in the internal functioning of the computer itself or its interfaces under the

influence of the program and could, for example, affect the efficiency or security of a

process, the management of computer resources required or the rate of data transfer

in a communication link.54

EPO crafted the term “computer-implemented invention”, which encompasses not

only methods of operating a machine or machines designed to perform a method.55 In the late

90s this term was broadened in the Appellate Body decision T 1173/9756 to include “a

computer program claimed by itself” if only the technical effect was present. Certainly, such

interpretation leaves the reader puzzled by trying to find differences between “program

claimed by itself” and “program as such”. Attridge answers that the practice of EPO

Appellate Body goes into the direction of construing the “as such” exception as only

presumption that computer programs do not have technical effect and thus allows to grant

52 Foundation for Free Information Infrastructure, Software Patents in Europe: A Short Overview, available at:
http://swpat.ffii.org/lisri/intro/index.en.html.

53 Skulikaris, FN 38 at 28.
54 Guidelines for Examination in the EPO, 2003, 45-46.
55 Id. at 45.
56 International Business Machines, Corp./Computer program product, Decision of Technical Board of Appeal

3.5.1 dated 1 July 1998, T 1173/97 (OJ 10/1999, 609).

17

patents for the “written text ... without the need of technical means.”57

There is a heated current debate on software patents within the European Union in

connection with the proposal for the Directive on the patentability of computer-implemented

inventions (Software Patents Directive).58 The proposal has already been amended and at the

time of this writing it appears that much still may change, especially after the recent

Enlargement. The directive is presented by its supporters as the response to the unclear

practice of EPO just described and divergent approaches towards software patentability in the

Member States. Briefly speaking, the directive would not allow to patent the computer

program itself but the invention embodied in the program and the proposal provides some

guidance how to distinguish between these two. Although the directive is more elaborate on

this point than EPC Art. 52(3), its opponents consider it just an attempt to confirm the lenient

practice of EPO and the way to make computer programs de facto patentable. It should be

kept in mind that even if the directive is adopted, it will not create any directly effective law;

thus, EPC and national laws will remain the source of relevant rules.

Using a formal legal language, but not with regard to any particular jurisdiction,

invention is either a product or a process, which satisfies all the following: (1) it is new; (2) it

involves an inventive step; (3) it is capable of industrial exploitation; and (4) is not excluded

from patentable subject matter.59 These must be analyzed by authorities in every patent

application. Certainly, there are some specific questions arising only in connection with

software, such as whether it produces the “technical effect”, but there are no reasons to

believe that there would be any relating to Open Source Software only. Moreover, because

57 Daniel J. M. Attridge, Challenging Claims! Patenting Computer Programs in Europe and the USA, 1
INTELLECTUAL PROPERTY QUARTERLY 22, 44 (2001).

58 6580/02 PI 10 CODEC 242.
59 LLOYD, FN 37 at 314. See also e.g. European Patent Convention Art. 52-57.

18

Open Source Movement does not use patents to protect their software, the questions of

patentability relevant for the purpose of this paper arise rather on a policy level as a part of

discussion on proper system of Information Technology legal protection.

1.4 Trade Secrets Protection of Computer Programs

Another way to protect computer programs is trade secrets law.60 Taking U.S. law as

the point of reference, the protected subject matter of trade secrets is similar to that of patents

– it can be methods or ideas. An important advantage; however, is that trade secrets do not

require compliance with such burdensome patent law requirements as novelty and non-

obviousness. The protection, though, is quite weak as it does not provide the holder with any

monopoly, does not prevent independent creations and may be lost if the information

becomes public.61 The very idea on which trade secrets protection is based is confidentiality.

It is the exact opposite of Open Source Software ideology and it may be said that trade secrets

clearly do not protect Open Source Software.

1.5 Contract Law and Licensing of Computer Programs

The overwhelming majority of contracts in the trade of computer programs are

drafted in the form of a copyright license. It may seem unusual, at least if compared to the

trade in other copyrighted works that after fixation are distributed as any other tangibles, with

the predominant use of the sales contract. The reasons for such difference will be discussed in

the subsequent section as well as in other parts of the paper. It suffices to say here, that

60 “Trade secrets” is an American term. In the UK, the analogous set of rules is usually referred to as “the law
on breach of confidentiality”. In various continental systems “confidential information” or “knowhow” is
often used. TRIPS regulates this matter in Sec. 7, Art. 39 titled “Protection of Undisclosed Information”. It
must be kept in mind that trade secrets are not usually regarded as part of intellectual property laws but
rather regulated by general civil law provisions or sometimes in the laws prohibiting unfair competition.

61 Carey R. Ramos, David S. Berlin, Three Ways to Protect Computer Coftware, 16 No. 1 COMPUTER LAWYER 16
(1999); Victoria A. Cundiff, Protecting Computer Software as a Trade Secret, in: 507 PRACTISING LAW

INSTITUTE, 18TH ANNUAL INSTITUTE ON COMPUTER LAW 761 (1998); Alois Valerian Gross, What is Computer
“Trade Secret” under State Law, 53 AMERICAN LAW REPORTS 4TH 1046.

19

software licenses play an important role in the rapid growth of this trade and allow

distributors to make their products easily and quickly available to the biggest number of

customers.

Putting aside copyright law considerations and looking from the contract law

standpoint software licenses can be described as contracts of adhesion, with the terms fixed

by the seller in a standard form. Mass-market software licenses usually come in the form of

“shrink-wrap” or “click-wrap”. The first name refers to the method of distributing the

software in a box shrink-wrapped in cellophane. In the early times of mass-market software

industry license terms used to be printed on the box. Nowadays, they are put inside the box

together with the program on a medium and printed manual. On the box, there is a reference

to the terms and a notice stating that the removal of the cover, use of software or failure to

return it after some fixed period constitutes assent to the terms of license.

In the “click-wrap” case, which is far more popular nowadays, the terms are

presented on the computer screen, during the interactive process of installation or before that,

at the time the program is downloaded from the Internet, either of which is carried on only

upon clicking on the “I agree” button. Sometimes it is possible to click on the button only

after scrolling down through the whole license or there may be other slight differences.

There are many other names in use for similar contracts, not necessarily constituting

a copyright license or having software as its subject matter, because the criterion here is the

procedure used in the contract formation. For example, “browse-wrap” refers to contracts

concluded by surfing on a particular web page. The user is usually only informed that the on-

line service is subject to specific terms, but not required to indicate whether he has read them

or not. In other cases there may be only a link to “terms of use” at the bottom of the page

20

providing the actual service.

To the extent that software licenses come in the form of a “-wrap” contract, the

discussion on their legal consequences forms a part of a wider dispute concerning the use of

standard-form contracting with the help of new technologies. Although the procedure used

for contracting may seem extremely novel and rapidly changing, the legal debate is focused

on such traditional concepts as “offer”, “acceptance” etc. To the extent this discussion

touches matters specific for Open Source contracting, it will be presented in this paper.

1.6 Theory and Practice of Current System of Legal Protection

Software legal protection rules are a part of the whole system of regulating

intellectual property. It is believed that the rationale and ideology underlying intellectual

property laws are different in the U.S. and continental Europe. American law is based on the

“incentive theory” that sees in the protection for intellectual property an incentive for creative

and innovative activity.62 The U.S. Constitution gives the Congress the power

[t]o promote the Progress of Science and useful Arts, by securing for limited Times

to Authors and Inventors the exclusive Right to their respective Writings and

Discoveries.63

The monopoly awarded for authors, inventors and other intellectual or industrial

property rights holders is believed to serve as such an incentive and promote the Progress.

Continental laws differ from American, or broadly speaking, common law approach,

as they shift the importance from providing the incentive to increase the public good towards

the protection of authors and their property rights in the creation. This “rights-based” theory

can be seen in such legal documents as the Berne Convention or numerous national laws. The

62 DREXL, FN 13 at 1.
63 U.S. Const. Art. I Sec. 8 cl. 8.

21

result is not only the different terminology (“copyright” in common law versus “author's

right” in Continental laws) but what is more important the existence of specific legal

institutes, such as moral rights and other substantial differences. Logically, after extending

the intellectual property legal protection over computer programs these respective theories are

intended to apply to them.

The goal of intellectual property laws system, especially when considered from the

American incentive-based standpoint, is to balance public and private interests. The society

has a clear interest to secure for itself a constant supply of innovation (“the Progress”). The

innovation constitutes of knowledge and its expressions or applications. Knowledge is a

public good in economic sense, which means that it is capable of being consumed by many

people at the same time without decreasing its value (non-rivalrousness) and that it is

extremely hard to differentiate between consumers, for example in order to exclude free-

riders from consumption (non-excludability). Although the supply and consumption of

knowledge lies clearly in the public interest, it is believed that no private interests in

producing it would exist unless a legal system for protection was provided.

Intellectual property laws constitute one system designed to provide incentives for

the production of knowledge (the others are for example, government procurement and

subsidies). The balance that they are trying to strike is the one between proprietary “control”

over the innovation and free public “access” to it. As Oddi rightly points out, the market

regulated by this system is the one for knowledge, not knowledge-related goods; thus, it is

extremely important to evaluate it not by taking under consideration the number of products

and services it makes available for consumption but first and foremost the amount of

22

knowledge it transfers to the public.64

As it was presented in the previous sections, software may benefit from at least three

legal methods of protection – copyright, patent or trade secrets. Each of them has been

drafted for a different subject matter and their usefulness may vary depending on the kind of

software or even on its particular element. For example, computer program “as such” should

not be patentable under EPC, but it will be rather easily covered by copyrights. In any case,

none of various intellectual property tools serve software distributors ideally. Trade secrets

are too weak, patents difficult to obtain and copyrights limited to the protection of

expressions not ideas. Not only copyright law grants third parties the access to programs'

underlying ideas, but also it allows to a great extent the copying of programs' main source of

value – their behavior. This is mainly due to a weak protection of non-literal elements and no

prohibition of independent creations. Thus, together with visible efforts to make patent

protection more readily available, software vendors reached for private contract long ago,

which, especially in business-to-consumer trade, allows to extend much power over the

buyers. Precisely speaking, software licenses are used to make the users contract away their

rights provided for in copyright statutes and prevent the application of such institutes as fair

use or first sale, to the extent it is legally possible.

It is usually raised that the main reason for the use of software licenses instead of

simple sales contracts stems precisely from the specificity of software. Contrary to books,

paintings etc., every time computer program is used it has to be copied (from some storage

device such as hard disk to the computer's RAM and then, command by command to the

CPU), copying being the very action allowed only for the copyright holder. Without any,

64 A. Samuel Oddi, An Uneasier Case for Copyright than for Patent Protection of Computer Programs, 72
NEBRASKA LAW REVIEW 351, 368 (1993).

23

express or implied, permission every user would become copyright infringer. Certainly this

fact alone is not decisive, as with the help of such well-established institutes as fair use or

implied licenses users could use programs legally purchased. Moreover, many copyright

legislators long ago amended statutes in order to allow users all these necessary actions.

The prevailing reason why licensing, not selling, software is so popular is the fact

that software distributors are at pains to protect themselves from at least two kinds of free-

riding. First of all they want to protect their consumer base and secure incomes, endangered

by piracy. Secondly, they aim against competitors, who would like to free-ride on developers

R&D investment and use ideas available after decompilation and other study of programs.

The first obstacle for free-riders results from technical means making it difficult to copy the

program without the use of sophisticated tools and the practice of distributing programs in

object code only, which does not allow for an easy access to ideas and knowledge embodied

in the program. Software licenses form a second level of security measures – they contain

express clauses prohibiting decompilation, copying or even using the program on more than

one computer. Thus technical means are accompanied with the threat of legal remedies.

Standard software licenses usually contain liability limitations and warranty

disclaimers, excluding developers and vendors liability to the extent permissible by

applicable law. Such clauses are just examples of the use of contract law flexibility and

obviously could be inserted in any other type of contracts; thus, their existence is not the

reason why the form of a copyright license is the most popular. They are the effect of one

more special feature of software, which has already been mentioned – the existence of

software bugs. If developers were to release software containing no mistakes, they would be

strongly discouraged from undertaking any development at all. Moreover, if they were to be

24

held responsible for even a fraction of damages resulting from the use of buggy software it

would definitely make their business very risky and unprofitable, unless they could

economically insure themselves from such liability by raising prices and shifting the burden

towards users. Liability limitation clauses are thus an alternative for such price shift and one

more example how developers' interests are protected with the use of contract law.

Apart from this clear benefit for software distributors, mass-market software licenses

allow them to take advantage of previously described “network effects”. Because of their

adhesive character they result in quick and easy conclusion of an enormous number of

contracts allowing to increase the value of a particular product in the eyes of consumers and

gain the edge over competition.

To sum up, the practice of the current system of software legal protection is very

much developers- and distributors- oriented. Despite the basic theoretical goal of intellectual

property laws to balance the control and access, the resulting effect for the users and general

public is practically no access, especially considering the fact that legal tools are backed up

with technical anti-circumvention measures. Users play the passive role of the consumers of

the end product and are at the mercy of developers in case they receive buggy software or if

they expect some additional functionality from the product they have already purchased. This

is the trade-off of the current system. Certainly, similar consumers' role in the market of

traditional tangible goods is understandable, but such products could not be easily adjusted to

their needs, as would be the case with software if only there were no legal and technical

measures used to prohibit that.

The use of law as described above constitute the system of protection of so-called

“proprietary software”. This paper is devoted to describe and analyze a very different

25

phenomenon – Open Source Software. But before precisely defining the subject matter,

discussing its elements and other details it is necessary to introduce some historical and other

basic information about Open Source Movement.

26

CHAPTER 2 - HISTORY AND PRESENT STATE OF OPEN SOURCE SOFTWARE

Open Source must be perceived as a process, still developing and having rich and

quite complicated history. This history will be briefly presented here in order to provide the

reader with the necessary background.

The signs of Open Source may be found in the earliest days of computer and

software industry. In fact, one may argue that it was the starting point from which programs

evolved into proprietary and copyrighted form. In these historical times, somewhere around

the middle of the last century, computers were scarce, unbelievably big and impossible to

operate by a layman. Computer programs were often written only for one machine as

computers lacked compatibility. Even for some time after this had changed software was

perceived mainly as a part of hardware not as a marketable product. Because no real software

market existed, there were no practical issues of computer programs being copyrighted,

licensed or pirated.

2.1 UNIX

The situation started to change with the development of the first portable operating

system in the 70s – UNIX. The development of the system had been initiated by Bell Labs

researchers and was initially designed for the computers used by AT&T. Its portability meant

it could be implemented on various machines and made it probably the first piece of software

that could be sold to users of many different computers. However, because of antitrust

restrictions on software marketing, the company decided to share UNIX freely. It was

allowing the licensees to access the source code in an attempt to receive their feedback.65

65 CHRIS DIBONA, SAM OCKMAN, AND MARK STONE, EDS., OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION

(O’Reilly, 1999); LAWRENCE LESSIG, THE FUTURE OF IDEAS: THE FATE OF THE COMMONS IN A CONNECTED WORLD ,
(Random House, New York, 2001).

27

The University of California at Berkeley was one of the institutions that took the

system for the use, analysis and further development. Numerous programmers, university

professors and students contributed improvements and extensions to the system. In 1977

Berkeley released its first Berkeley Software Distribution (BSD), consisting of the system

together with various application programs. For some time AT&T and Berkeley exchanged

innovations and parts of programming code; however, without joining their distributions into

a single product. In 1984 AT&T was broken up and no longer remained subject to restrictions

on software marketing; it decided to start charging for licensing their UNIX released under

the name System V. Licenses giving access to source code were still issued, but were

expensive and included non-disclosure clauses. As BSD used much of AT&T’s code, all its

recipients had to obtain a license from AT&T too. Only in 1989 did BSD Networking

Release 1 appear, from which all AT&T-owned code was retracted and substituted by

programs written solely by the University.

In the 90s, BSD continued being marketed by Berkeley Software Design, Inc.

(BSDI), a company linked to the University. Activities of BSDI gave rise to concern of

AT&T’s subsidiary, Unix System Laboratories (USL) the assignee of the rights to UNIX,

which filed a lawsuit against BSDI together with The Regents of the University of California

in 1992.66 USL initially pleaded eleven claims for relief, including federal copyright and

trademark claims, together with state contract, tort, and trademark dilution claims. The central

issue of the case was whether BSDI and Regents appropriated parts of USL’s UNIX and then

used and distributed these parts without authorization in violation of plaintiff's copyrights and

66 1993 Copr.L.Dec. P 27,075, (27 U.S.P.Q.2d 1721); 27 U.S.P.Q.2d 1721; 1993 Copr.L.Dec. P 27,166, (86
Ed. Law Rep. 738, 29 U.S.P.Q.2d 1561).

28

trade secrets.67

More precisely, the case concerned one of the AT&T’s UNIX versions called V32,

which was licensed to the University with permission to create derivatives and, to the extent

that the derivatives were free of proprietary information, to distribute them without

restriction.68 The University exercised its contractual right by creating its BSD releases and

distributing them. According to USL, the BSD Net2 release was an infringement of the

license since it contained AT&T’s proprietary code. Indeed, USL’s hired expert found

portions of 32V code included in the Net2 system.69 The court agreed with the parties that the

size of overlaps (which was merely 130 lines out of 1.3 million in some part) is insignificant

and analyzed their nature. There were three kinds of them: (1) overlaps in variable parameter

and function names; (2) the text of noncoding comments; and (3) the actual sequence of the

instruction code itself.70 According to the court, USL had failed to demonstrate likelihood that

it can successfully defend its copyright in 32V71 or likelihood to succeed on the merits of its

claim for misappropriation of trade secrets;72 therefore, the preliminary injunction prohibiting

BSDI from further distribution of BSD was not granted.

The case was not decided on its merits, as the parties started settlement negotiations,

which continued until 1994, when USL with all its rights to AT&T’s UNIX had been already

acquired by Novell. Although the exact terms of the settlement remain confidential, the

crucial parts were summarized by McKusik: the parties agreed to remove three out of 18,000

files from the Net2 Release and USL stipulated not to sue anyone using the 4.4BSD-Lite

67 1993 Copr.L.Dec. P 27,075 at 1.
68 Id. at 2.
69 Id. at 3.
70 Id.
71 Id. at 15.
72 Id. at 18.

29

release that came to being in this way.73

Not only all the questions of important material facts were not decided during that

historical lawsuit, but also no issues of law concerning, for instance, validity of BSD license

were considered by the court. However, the facts outlined above and the dispute over them

has to be taken under consideration when trying to untangle current Open Source legal

problems, namely the SCO v. IBM dispute which is shortly addressed later in this paper. In

any case, USL v. BSDI is an important event in the development of one of the major pieces of

Open Source Software – three flavors of BSD system. These independent Open Source,

UNIX-like operating systems came to being after 1992 on the basis of one of Berkeley

distributions designed for 386 PC architecture, 386/BSD. Its users formed groups for the

purpose of cooperating in debugging and enhancing the system under the names of NetBSD

and FreeBSD. Additional group, OpenBSD, emerged in the mid-90s. Despite the common

starting point the programs they distribute constitute different operating systems. After the

settlement of USL v. BSDI case, all groups incorporated 4.4 BSD release to their

distributions. From then on, they are maintained and developed solely by their users, though

the participation of anyone is welcomed.

2.2 Free Software and Project GNU

Open Source Movement could not have come into being without the Free Software

Movement. It has been initiated and the term “Free Software” has been introduced by Richard

M. Stallman, who is still the unquestioned leader of the movement. During his work at the

Massachusetts Institute of Technology, Artificial Intelligence Laboratories (MIT Labs) from

the early 70s, Stallman witnessed that the practice of sharing and exchanging software just as

73 Marshall Kirk McKusick, Twenty Years of Berkeley Unix, in DIBONA ET. AL., FN 65 at 27, 34.

30

“cooking recipes” was going into the past.74 At that time, as Lessig describes it:

[T]he openness of commercial code [i.e. software] began to change. As products

became more numerous and users became more diverse, and as the cross platform

compatibility of programs grew, the companies producing these products exercised

more and more control over how the products might be used. ... Users became less

partners in the process of developing and using computer systems and more

consumers. And suppliers of code were less eager to permit their code to be copied

by others.75

From the beginning of the 80s, programmers were required to sign non-disclosure

agreements for the software. According to popular anecdote, Stallman originated Free

Software Movement because he was refused access to the control program of a new printer

that used to be freely accessible before and thus subject to many useful modifications.

Proprietarizing computer programs and making their source code secret meant for him the

end of a friendly cooperation era. Instead of joining the main stream he left his job at MIT

Labs and started developing the whole system of computer programs that could be used,

modified and redistributed freely under the name Project GNU.76 Supervision and

maintenance of Project GNU is the main purpose of the Free Software Foundation (FSF),

established by Stallman and his followers in 1985.

2.3 Linux

“Linux” is the name used for the most popular Open Source operating system.

74 Richard M. Stallman, The GNU Operating System and the Free Software Movement, in DIBONA ET AL., FN 65
at 40, 40.

75 LESSIG, FN 65 at 52.
76 GNU stands for “GNU is not UNIX”, i.e. not a proprietary, closed-code system. (Richard M. Stallman, The

GNU Project, in STALLMAN, FN 92 at 17) However, Stallman decided “to make [GNU] compatible with
UNIX, so that it could be portable, and so that UNIX users could easily switch to it.” (Stallman, FN 74 at
41). Instead of explaining why GNU actually IS UNIX, it suffices to say here that the name “GNU” is just
one of many plays on words beloved in the programming community.

31

Strictly speaking; however, it is only the name of kernel program77 written in 1991 by Linus

Torvalds, then a student at University of Helsinki, Finland. At that time, GNU Project,

although much advanced, was still lacking a satisfactorily working kernel, which would allow

for a release of the whole GNU operating system. Because Torvalds decided to share his

program with the world, the kernel was successfully combined with the rest of GNU

programs thus forming a complete operating system, which FSF recommends calling

“GNU/Linux”. Linux, the kernel, is constantly developed by Torvalds and programmers more

or less closely cooperating with him.

Torvald’s decision to make the kernel freely available, together with a similar step

taken by intellectual property rights holders in other elements of GNU/Linux system, made it

possible for everyone to create his own version of the complete operating system by tuning

up the kernel and merging it with any other necessary programs. Because the kernel is a

crucial part, the operating system based on Linux is commonly referred to using its name.

Linux or GNU/Linux, the system, is structured into distributions similarly to BSD and its

“cousins” (FreeBSD, NetBSD and OpenBSD). Distributions consist of operating system and

various sets of application programs adjusted to work together. Many of these programs come

from the GNU Project; however, there are plenty of applications written for the Linux system

by other developers, including those working under the proprietary model.

There are many different GNU/Linux distributions prepared by persons who track

the Internet for the newest versions of all the programs or develop some of them themselves.

The idea of Open Source intends to allow this to be done by everyone, both in technical and

legal sense. Such people sometimes cooperate under informal structures but often form

77 Kernel is the core program of every operating system. It is responsible, generally speaking, for the
communication between other programs and the computer.

32

entities. Many of them work on non-profit basis, examples of which are Debian or Slackware.

There are also plenty of commercial companies (e.g. Red Hat, SuSE, Mandrake) that have

established successful businesses in selling GNU/Linux distributions prepared by them.

Therefore, no single operating system called “Linux” exists, as there is no single car brand.78

In order to be formally precise, each time it should be indicated which particular Linux

distribution the speaker has in mind (e.g. Debian GNU/Linux, SuSE Linux, etc.). However, it

matters mostly from a technical standpoint and legally speaking there are no significant

differences between distributions that would be overseen by not making such indication.

2.4 Open Source Initiative

In the 80s and also some time after Torvalds’ contribution allowed for putting

together complete and working operating system, Open Source programs were not known to

the wider public. Even after one of the first commercial companies marketing Open Source,

Cygnus Solutions was founded in 1989, these programs continued to be written by the

hackers and for the hackers.79 It required quite sophisticated programming knowledge and

skills to make Open Source programs running on any computer. The other reason why Open

Source seemed not to be a good idea of doing business was what Eric S. Raymond called

“’free-speech/free-beer’ ambiguity,”80 which will be thoroughly described in the section

comparing Free Software and Open Source Movements. It took some time for the developers

to make Open Source programs user-friendly and for the firms to get accustomed to the idea

78 This comparison was made in ROBERT YOUNG & WENDY GOLDMAN ROHM, UNDER THE RADAR: HOW RED HAT

CHANGED THE SOFTWARE BUSINESS – AND TOOK MICROSOFT BY SURPRISE (Coriolis Group Books, Scottsdale,
Arizona 1999).

79 In the words of Stallman, “hacker” means “someone who loves to program and enjoys being clever about
it.” (Stallman, FN 74 at 48). In this paper it will be used to indicate a highly trained professional
programmer, definitely much above the level of an average computer user. In any case “hacker” should not
be mistaken for a “cracker”, a person using Information Technology in order to commit various crimes.

80 Eric S. Raymond, The Revenge of the Hackers, in DIBONA ET. AL. FN 65 at 118, 120.

33

of selling something, which is accessible for everybody for free anyway.

Open Source Initiative (OSI) was established by Raymond and others in order to

introduce and promote this innovative approach to the world of business, predominantly

accustomed to the proprietary model. One of the first moves was the change in terminology –

from “Free Software” to “Open Source”, which was intended to help to avoid explaining

what is really important in Open Source from the economic point of view. Secondly, OSI

started to issue Open Source Certificates in order to establish a market brand and promote

standardization in Open Source licensing.

2.5 Various Open Source Projects

Open Source Software constitutes not only of operating systems such as GNU/Linux

or three BSD “cousins”. It is also a plethora of application programs serving various

purposes, from solving sophisticated technical tasks to doing what the majority of common

users usually expect – office applications and game software. Open Source projects presented

in this paper were chosen using two criteria. Firstly, they are one of the most popular pieces

of Open Source Software. Secondly, attention was given to the legal issues triggered by them.

Thus, care was taken to choose for discussion projects, the legal protection of which is the

most important and at the same time interesting. Certainly, because of the big number of

them, the choice presented here clearly does not constitute of all projects that are worth

analyzing. On the other hand, many legal institutes are so popular that this choice may be

considered sufficient for providing enough examples. Thus, apart from the Linux kernel,

some of the most popular distributions of GNU/Linux system referred to at various occasions

and three BSD operating systems, the following will also be discussed: Apache HTTP Server,

Mozilla Web Browser and OpenOffice.org Office Suite.

34

2.5.1 Apache HTTP Server

The Apache Project aims at creating “a robust, commercial-grade, featureful, and

freely-available source code implementation of an HTTP (Web) server.”81 The development

of the Apache Server was started in 1995 by a group of webmasters in the need of a server for

their work. Apache is based on a program called httpd, developed at the National Center for

Supercomputing Applications (NCSA). Httpd was released into public domain and many

webmasters who developed their own extensions and bug fixes wanted to exchange them and

join their efforts for further development of the server.82 They established a forum known as

“the Apache Group” and quickly started releasing the program that they developed

collaboratively with many volunteers from all over the World.

In 1999, members of the Apache Group formed the Apache Software Foundation to

support the development of the Server and other related projects.83 All project participants are

supervised by the Apache Group under the rule of “meritocracy – the more work you have

done, the more you are allowed to do”.84 They employ quite formal rules e.g. concerning

voting on the inclusion of proposed improvements into subsequent versions of the Server.

The Apache Server remains free and the Apache Group states:

To the extent that the protocols of the World Wide Web remain “unowned” by a

single company, the Web will remain a level playing field for companies large and

small. Thus, “ownership” of the protocol must be prevented, and the existence of a

robust reference implementation of the protocol, available absolutely for free to all

companies, is a tremendously good thing.85

81 The Apache Software Foundation, About the Apache HTTP Server Project, available at:
http://httpd.apache.org/ABOUT_APACHE.html.

82 Id.
83 The Apache Software Foundation, Home Page, available at: http://www.apache.org/
84 The Apache Software Foundation, FN 81. See also: The Apache Software Foundation, How the ASF works,

available at: http://www.apache.org/foundation/how-it-works.html#meritocracy.
85 The Apache Software Foundation, FN 81.

35

Additionally, the free availability of Apache is considered a prerequisite for its users

to contribute back to the project with their improvements and bug fixes.

2.5.2 Mozilla Web Browser

The Mozilla Project came into being because of a commercial company’s deliberate

decision to choose Open Source as their model of business. In January 1998, Netscape

Communications announced it would start distributing their Netscape Communicator

Standard Edition 5.0 web browser and some other applications for free and with access to

source codes.86 Later on, the company founded Mozilla Organization, a forum for all

contributors involved in the project, which main aim is to facilitate reaching consensus about

the project’s development.

Today, the project encompasses a number of applications, with the Mozilla Web

Browser and more recently, Mozilla Firefox Web Browser, being its flagship. The project is

structured into modules supervised by “module owners” chosen because of their merits for

the project, who decide about modifications and improvements to be submitted for the

inclusion in subsequent releases of Mozilla products.87 The process is intended to be a self-

regulating “meritocracy”, because “module owners” can be replaced by persons whose code

proves to be better. In fact, the whole Mozilla project can be replaced thanks to the openness

of its structure, as users might simply turn to those distributors who supply better code if this

code for some reason would not be approved by the Mozilla Organization.

Netscape still develops and distributes products such as Netscape Communicator and

86 Netscape, Netscape Launches Aggressive 'Unlimited Distribution' Program For New Free Client Software,
available at: http://wp.netscape.com/newsref/pr/newsrelease560.html; Netscape, Netscape Announces Plans
to Make Next-Generation Communicator Source Code, available at:
http://wp.netscape.com/newsref/pr/newsrelease558.html.

87 The Mozilla Organization, Mozilla Roles and Responsibilities, available at:
http://www.mozilla.org/about/roles.html.

36

there is a both-ways exchange between them and Mozilla, as the code is shared between the

applications.

2.5.3 OpenOffice.org Office Suite

OpenOffice.org is a set of office applications, which includes a word processor,

spreadsheet, presentation manager and drawing program.88 Its appearance (user interface) and

available set of functions are similar to other office software and it also allows exchange of

documents with other applications. There are versions of OpenOffice.org running on Linux

and other UNIX-like operating systems, but it can also be used with Microsoft Windows.89

OpenOffice.org is developed by Sun Microsystems with the help of contributors

from all over the World. At the same time Sun maintains the commercial version of the

application – StarOffice, with which OpenOffice.org has similar link to the one between

Mozilla and Netscape. Contributors willing to participate in the development of

OpenOffice.org are required to register, subscribe to a mailing list and join one or more sub-

projects, which are devoted to particular tasks.90 Project leads have voting rights concerning

future development of the whole application.

88 Sun Microsystems, OpenOffice.org 1.1 Product Description, available at:
http://www.openoffice.org/product/

89 Sun Microsystems, download: Download Central, http://download.openoffice.org/1.1.2/index.html.
90 See generally: Sun Microsystems, Contributing to OpenOffice.org, available at:

http://www.openoffice.org/contributing.html.

37

CHAPTER 3 - ROLE OF LAW IN DEVELOPMENT OF OPEN SOURCE SOFTWARE

It has been indicated at the end of Chapter 1 that Open Source Software differs

significantly from proprietary software. Hopefully, the brief overview of the movement's

history and short descriptions of some of its major projects helped to present the technical

difference. The purpose of current Chapter is to find out what the legal differences are and

what the exact role that law plays in the development of Open Source Software is. In order to

resolve these issues, it will be explored what parties are involved, what their interests are,

which ideology they refer to, and finally, what use of law they make or intend to make.

3.1 Free Software v. Open Source

Generally speaking, both “Open Source” and “Free Software” refer to computer

programs, over which users have total control. They can freely use the program for any

purpose, modify and redistribute it. In order to be able to exercise these rights in practice,

they are also given access to programs’ source codes. Only then users are able to see how

programs operate, find causes of errors, correct them on their own and even develop the

programs by adding improvements. This is what distinguishes both Open Source and Free

Software programs from “proprietary programs”, which are distributed only in object code, or

“binary” format. As it was already presented, the users of proprietary programs are prohibited

by licenses to modify and redistribute them, and the allowed scope of use is significantly

limited. Further distinction has to be made between Open Source, Free Software and public

domain. Open Source and Free Software licensors do not waive copyrights, which is the case

with public domain software.

Although “Free Software” seems to address the same phenomenon as “Open Source”

there are some formal and historical differences. Stallman, who is the author of the term

38

“Free Software”, believes that access to source codes and ability to modify and improve

programs are the natural right of users. He has developed this idea in many publications

transmitting a strong ideological and ethical message referring to ideals such as freedom, free

speech91 and friendly cooperation. For example, a big part of Stallman's GNU Manifesto

entitled Why All Computer Users Will Benefit,92 draws a Utopian view of an ideal computer

users community. According to Stallman “[o]nce GNU is written, everyone will be able to

obtain good system software free, just like air.”93 In another essay titled Why Software Should

Not Have Owners94 he argues against the copyright protection for computer programs

comparing this profit-driven system of control with practices of mass censorship in the

former Soviet Union. Being against the practice of the current system of intellectual property

protection, Stallman nevertheless supports the underlying idea of this system – to supply the

public with knowledge and innovation.95 But above all, he puts the ideals of open and free

cooperation, friendly sharing of knowledge and helping the neighbor.96

Stallman introduced the following Free Software Definition (FSD):

• Freedom 0: The freedom to run the program, for any purpose.

• Freedom 1: The freedom to study how the program works, and adapt it to your

needs. (Access to the source code is a precondition for this.)

• Freedom 2: The freedom to redistribute copies, so you can help your neighbor.

• Freedom 3: The freedom to improve the program, and release your improvements to

the public, so that the whole community benefits. (Access to the source code is a

91 But not free beer, which is stressed by almost everybody who writes on this topic. Distinction between free
speech and free beer is made to show that freedom of access to source code does not mean it will always be
given away gratis.

92 Richard M. Stallman, GNU Manifesto, in: RICHARD M. STALLMAN, FREE SOFTWARE, FREE SOCIETY: SELECTED

ESSAYS OF RICHARD M. STALLMAN 31, 34 (GNU Press, Boston, 2002).
93 Id.
94 Richard M. Stallman, Why Software Should Not Have Owners, in: STALLMAN, FN 92 at 45.
95 Id. 46-48; Richard M. Stallman, Misinterpreting Copyright – A Series of Errors, in: STALLMAN, FN 92 at 77.
96 Stallman, FN 94 at 49.

39

precondition for this.)97

Additionally, Stallman uses the term “copyleft”,

[which] central idea ... is that [everyone is given] permission to run the program,

copy the program, modify the program, and distribute modified versions – but not

permission to add restrictions of their own. Thus, the crucial freedoms that define

“free software” ... become inalienable rights.98

In other words, “copyleft” is the mirror image of “copyright”, as instead of allowing

for proprietarization and privatization of software it helps to keep it free in the meaning of

FSD. Both FSD and copyleft are expressed in the legal language of license clauses. Free

Software Foundation (FSF) maintains a whole list of software licenses categorized as Free

Software.99 Thus, in the understanding given to it by FSF, a program is Free Software if only

it complies with all four freedoms defined in FSD. It does not need to be “copylefted” but

FSF encourages it in order to protect “the program's freedom”.

“Open Source” was introduced at the time of Netscape's announcement to open the

code of their web browser by a group consisting of people such as Raymond or Bruce Perens,

who subsequently formed Open Source Initiative (OSI).100 They proposed a new term for an

old phenomenon in order to denote the practical significance of access to source codes and to

bring the idea under attention of the world of business. Although Stallman does not object to

the commercialization of software and often explains that it had never been his intent that

Free Software be available at no charge, it may be easily seen from his writings briefly

summarized above, that the development of a successful Free Software business is not his

97 Richard M. Stallman, Free Software Definition, in: STALLMAN, FN 92 at 41.
98 Stallman, The GNU Operating System and the Free Software Movement, in DIBONA ET AL., FN 65 at 43.
99 Free Software Foundation, Various Licenses and Comments about Them, available at:

http://www.fsf.org/licenses/license-list.html.
100 Open Source Initiative, History of the OSI, available at: http://www.opensource.org/docs/history.php.

40

main concern. Yet, in economic terms, the friendly sharing Stallman speaks about, amounts

to reduced costs of tracing programming mistakes and gathering information about users’

expectations. Thus, Open Source Initiative describes itself as “a marketing program for free

software”, based on “solid pragmatic grounds”.101 These are developed in three Cases for

Open Source: For Business,102 For Customers103 and For Hackers,104 presenting such practical

benefits of Open Source as reliability and quality or independence from a single supplier.

According to the people behind OSI, “Free Software” is too ambiguous to attract

commercial companies, mainly because it suggests that the programs are given away free of

charge or are in public domain. “Free Software”, especially in the light of Stallman's writings,

is also strongly associated with “hostility to intellectual property rights, communism, and

other ideas hardly likely to endear themselves to an MIS manager.”105 Whether it is the right

association remains to be seen but in the minds or “Open Source” proponents the completely

new term is supposed to clarify this misunderstanding and avoid entering a heated ideological

debate. Additionally, Open Source Initiative distances itself from ideological and moral

dilemmas, limits to economic arguments and “does not have a position on whether ideas can

be owned, whether patents are good or bad, or any of the related controversies.”106

Legal significance of “Open Source” should be mostly attributed to the Open Source

Definition (OSD), which current Version 1.9 states: “Open source doesn't just mean access to

101 Open Source Initiative, Frequently Asked Questions, available at:
http://www.opensource.org/advocacy/faq.php.

102 Open Source Initiative, Open Source Case for Business, available at:
http://www.opensource.org/advocacy/case_for_business.php.

103 Open Source Initiative, The Open Source Case for Customers, available at:
http://www.opensource.org/advocacy/case_for_customers.php.

104 Open Source Initiative, The Open Source Case for Hackers, available at:
http://www.opensource.org/advocacy/case_for_hackers.php.

105 Eric S. Raymond, The Revenge of the Hackers, in DIBONA ET. AL., FN 65 at 118, 120.
106 Open Source Initiative, FN 101.

41

the source code. The distribution terms of open-source software must comply with the

following criteria” and goes on to lay down 10 licensing conditions:

1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a

component of an aggregate software distribution containing programs from several

different sources. The license shall not require a royalty or other fee for such sale.

2. Source Code

The program must include source code, and must allow distribution in source code

as well as compiled form. [Detailed means of source code availability follow]

3. Derived Works

The license must allow modifications and derived works, and must allow them to be

distributed under the same terms as the license of the original software.

4. Integrity of The Author's Source Code

[Allowed licensing conditions of redistributing modified software]

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific

field of endeavor. For example, it may not restrict the program from being used in a

business, or from being used for genetic research.

7. Distribution of License

The rights attached to the program must apply to all to whom the program is

redistributed without the need for execution of an additional license by those parties.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's being part of a

particular software distribution. If the program is extracted from that distribution and

42

used or distributed within the terms of the program's license, all parties to whom the

program is redistributed should have the same rights as those that are granted in

conjunction with the original software distribution.

9. License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along

with the licensed software. For example, the license must not insist that all other

programs distributed on the same medium must be open-source software.

10. License Must Be Technology-Neutral

No provision of the license may be predicated on any individual technology or style

of interface.107

Similarly to FSF, OSI scrutinizes software licenses and evaluates them as complying

with OSD or not. It also issues certificates of compliance.

In order to determine and clarify the scope of this paper it is necessary to find what

legal consequences the relationship between “Free Software” and “Open Source” has. It is

possible to compare FSD with OSD but although they use normative language, they do not

set rights and obligations. Certainly, from the legal point of view it is the software license that

matters and since both organizations declare particular licenses conforming or not with their

respective definitions it seems reasonable to compare the lists of these licenses and thus

determine whether “Free Software” legally differs from “Open Source”. Such comparison

reveals some differences, which for the purpose of this paper can be considered minor.108 All

the licenses discussed in this paper, namely GNU GPL, GNU LGPL, BSD License, Apache

Licenses, MPL and SISSL are approved by both FSF and OSI as conforming with their

respective definitions. Thus, if one limits the discussion to the legal aspects of these licenses
107 Open Source Initiative, The Open Source Definition, available at:

http://www.opensource.org/docs/definition.php.
108 There are only two licenses approved by OSI, which are expressly not approved by FSF. There are many

licenses included in one list only.

43

it does not seem to be a great formal mistake to use terms “Free Software” and “Open

Source” interchangeably.

For Stallman though, “Free Software” is better than “Open Source” and he treats

these two movements as substantially different in their values and ways of looking at the

world, but still remaining “two political camps within the free software community.”109

Although he recognizes proprietary software, not the Open Source Movement as “the

enemy”, Stallman does not want to stop raising his ethical arguments and make any

concessions of the users' freedoms. His main argument is that different words convey

different meanings and “Open Source” was designed not to raise the point of users'

freedom,110 or maybe even in order to place “profit above freedom, above community, above

principle.”111 Simply speaking, Stallman was never against making profit from software, but

strongly objects to every attempt at making it proprietary; he believes that “Open Source”

blurs this idea.

Thus, even if legal differences are minor, there is an ideological gap between FSF

and OSI. The former conducts a “moral crusade”, the latter merely a “marketing program”. It

influences all legal questions to the extent that both exist within the same legal system of

software protection. More precisely speaking, their rationales make them use the system to

different ends. For example, GNU GPL drafted by FSF contains a very strong “copyleft”

clause, which generally speaking is designed to legally force programmers to release their

programs under GNU GPL if they are in a certain relationship with original programs covered

by it. This so called “copyleft virus” is intended to spread the Free Software idea and make

109 Richard M. Stallman, Why “Free Software” is Better than “Open Source”, in: STALLMAN, FN 92 at 55, 55.
110 Id. at 59.
111 Stallman, FN 98 at 48.

44

releasing proprietary software harder. In comparison, many commercial companies working

under Open Source model use far weaker “copyleft” clauses or even “dual licensing schemes”

which aim at satisfying both the hackers' community and those who follow proprietary

tradition, thus not influencing anyone to adhere to any particular ideology. Furthermore, Free

Software Movement is concerned with creating the whole system of Free Software and looks

closely at the licenses whether they allow programs to be linked with each other. For this

reason, FSF indicates that some of the licenses, although they make a program Free Software,

are GPL-incompatible, which means that “a module released under such licenses cannot be

legally combined with a module covered by GNU GPL in order to make one larger

program.”112 OSI makes no differences between OSI-approved licenses and one reason for it

is probably that commercial companies they address are not interested in cooperating at a

scale, which Stallman would like to see between all computer users.

For the convenience of the reader and clarity of the text, the term “Open Source”

will be used throughout this thesis, but by no means should it suggest that the Open Source

Movement as a whole is homogeneous or ideologically neutral.

3.2 Hackers' Culture

In order to fully understand the Open Source phenomenon, it is not enough to

distinguish between the ideologies of Free Software and Open Source. There are many

different social groups and market players within the movement, all connected by the

underlying idea, which is to share one's work and invite others to cooperate. It evolved from

the academia, such as the one Stallman worked at before leaving MIT, which was based on

open cooperation between scholars and students. This scientific community served as the

112 Free Software Foundation, FN 99.

45

starting point for the hackers' culture, which further developed over the Internet to encompass

many technologically-savvy people who like to solve challenging tasks together. Only

subsequently, lured by the benefits OSI talks about, commercial companies joined them.

Thus, all the participants in the Open Source phenomenon may be divided into non-profit and

business players, and the division lines usually run along Free Software – Open Source

distinction discussed in the preceding section. The criterion here is not the ideology but the

predominant motivation to introduce or participate in Open Source projects. The purpose of

this section is to present briefly the culture, which has evolved among non-profit Open

Source participants and to evaluate its impact on the law.

An interesting example of the specificity of this culture is Debian Open Source

project. It was started in 1993 by Ian Murdock, then a university undergraduate, in order to

create a free GNU/Linux operating system and has evolved to be one of the most popular

Linux distributions.113 What is particularly interesting is that their distribution is developed

under the rules of Debian Social Contract, a big part of which (“Debian Free Software

Guidelines”) served as a basis for Open Source Definition.114 The current version of the

Contract was “ratified” in April 2004 and contains rules of developing and distributing the

system. It is hard to authoritatively determine the Contract's legal character as it is much more

the organization's program statement and code of conduct than an agreement. At the same

time it addresses the users and makes representations about the software contained in Debian

distribution.

It is not the most important whether the clauses of the Contract could serve as a basis

113 Debian Documentation Team, A Brief History of Debian, available at:
http://www.debian.org/doc/manuals/project-history/.

114 Software in the Public Interest, Debian Social Contract, available at:
http://www.debian.org/social_contract.en.html.

46

for any legal action. The purpose for which it is mentioned in this paper is to show an

example of rules governing the Open Source Community. Although sometimes they are

spelled out in documents such as Debian Social Contract, many norms remain only moral or

social and the hackers usually abide them regardless of their legal validity.115 This has to be

remembered when considering the legal aspects of more formal documents such as the Open

Source licenses. Indeed, according to Gomulkiewicz, “the [GNU] GPL reads like a

combination of a political tract, philosophy dissertation, how-to guide for non-lawyers, and

[finally] lengthy, complex license contract.”116 The result is that many legal institutes have

different meanings in the Open Source practice and they work not as a lawyer would expect

them to work. Simply speaking, the hackers do not always behave in the way the legal

understanding of their documents would suggest.117

Many other interesting social customs have been described and analyzed by

Raymond in his essay Homesteading the Noosphere.118 The main conclusion that can be

drawn from this writing is that the hackers' cooperation is not so free and loose as it could be

inferred at first glance from its friendly and predominantly not-for-profit character. The

organizational hierarchy together with formalized cooperation procedures is quite well

developed. For example, the black letter of Open Source licenses suggests that since everyone

has permission to modify and redistribute, the development of particular project should

115 For example, one of the first and still very popular Linux distribution, Slackware (originated in 1993 by a
university student, Patrick Volkerding) does not have any constitution, philosophy etc. Their webpage
(http://www.slackware.org) is more focused on technical issues.

116 Robert W. Gomulkiewicz, De-bugging Open Source Software Licensing, 64 UNIVERSITY OF PITTSBURGH LAW

REVIEW 75, 92 (2002).
117 It is also interesting to see that the hackers treat the licenses they draft similarly to computer programs. They

“upgrade” them and issue new versions, numbering of which resembles numbering of subsequent program
releases. They also discuss “compatibility” of various licenses, whether they can be linked etc.

118 Eric S. Raymond, Homesteading the Noosphere, available at: http://www.catb.org/~esr/writings/cathedral-
bazaar/homesteading/

47

quickly “fork” into many competing products. Yet, in the long history of Open Source it

happened only to BSD operating system if one considers the major projects. According to

Raymond this is because “the open-source culture has an elaborate ... set of ownership

customs.”119 There is usually only one person or a small group considered to actually “own”

the project, referred to as the “project coordinators”, who decide about further development of

the project.

A quick glance at all the customs described by Raymond supports the conclusion

that Open Source licenses backed up with social norms form a very flexible system aimed at

preserving not the interest of a particular developer but the whole community. For example,

in the proprietary world, frictions in certain company would stall the development of this

company's projects, whereas when the cooperation in a particular Open Source group

becomes too burdensome and social norms no longer can prevent their conflicts it is always

legally possible for anyone to “fork” the project and continue working on it with other

people. Thus, all the previous work is preserved for the community.

It seems that the main purpose of Open Source licenses is to protect the movement

from the real “enemy” – proprietary software. As it may be seen from the German case

described below, the main threat for an Open Source project is to be proprietarized and to

have its source code closed. As all the advantages of Open Source come from the availability

of the source code this would simply lead to the project's death or at least serve as a strong

deterrent for participants to contribute. This is the point at which social norms are particularly

strong and where there is a real threat of using the legal weapons of licensing clauses.120 But
119 Id. at 6.
120 Moglen raises the argument that the acceptance of the license (GNU GPL) is only required when the user

engages in any activity that is connected with the threat of proprietarization of Open Source Software.
According to him, simple use, inspection or even experimental modification is not covered by GNU GPL.
(Eben Moglen, Free Software Matters: Enforcing the GPL, I, 2, available at:

48

again, they do not serve particular developers as it is the case with proprietary licensing but

the community and protect it from being deprived of the code. The most interesting aspect of

it is, that this system is almost frictionless and works more efficiently than the one designed

by proprietary software licensors. This conclusion may be drawn from the fact that so far

there have been few litigations involving Open Source in comparison to many cases dealing

with the enforceability of proprietary licenses. Eben Moglen, the legal counsel for Free

Software Foundation, describes the procedures of enforcing GNU GPL and reports that it was

never necessary to bring the matter before court and infringements were remedied quickly

after notices or some negotiation.121 According to him, the infringers have more incentives to

comply with licenses and get the software for free, instead of stealing it.

The knowledge of Open Source community norms and license enforcement practice

is also extremely important de lege ferenda. There is much attention given to Open Source

Software by the European Union122 and public administration of Member States,123 which

may lead them to draft changes in the system of intellectual property protection. In such case

it must be precisely known what exactly to protect in Open Source Movement. Moreover,

moral norms which seem to work fine already should not be ignored.

3.3 Open Source as Marketing Model

The hackers (the technologically-savvy individuals) voluntarily participate in Open

Source projects mainly because they need the tools they develop (as is the case with the

http://moglen.law.columbia.edu/publications/lu-12.html).
121 Eben Moglen, Free Software Matters: Enforcing the GPL, II, 1-3, available at:

http://emoglen.law.columbia.edu/publications/lu-13.html.
122 European Communities, Europa – Information Society – Free & Open Source Software – Introduction,

available at: http://europa.eu.int/information_society/activities/opensource/index_en.htm
123 See for example: werk21, Bundestux – Pinguine ins Amt! [Bundestux – Penguins to the Office!], available

at: http://www.bundestux.de/; Piotr Bolek, Forum Rozwoju Wolnego Oprogramowania [Forum for the Free
Software Development], available at: http://frwo.linux.org.pl/ (in Polish).

49

Apache Server), they want to help others in their free time or they want to gain recognition

and authority. Obviously, the reason why commercial companies start or participate in Open

Source projects is to profit. The indigenous system of Open Source collaboration allows all

these players to realize their respective goals. This, however, is not done in the traditional

way of the proprietary market, which clearly sets borders between firms – the suppliers and

users – the consumers. The system of legal protection plays important role in making Open

Source attractive for all the players.

It needs a bit of abstract and creative thinking to establish a successful business in

the Open Source world. First of all, it is relatively hard to make an Open Source program a

product and companies usually decide to opt for one of alternative “Indirect Sale-Value

Models” described by Raymond.124 But even so, especially in places of the World with poor

Internet access some people are willing to pay for Open Source Software on tangible media

despite it is anyway downloadable from a FTP server for free. They are often willing to pay

more, if the software is preconfigured, tested and warranted. Thus, Open Source companies

mainly focus on adding the value to otherwise free programs. Some other variant is to use

Open Source Software to support the company's other products, which are designed for or

work with it. Server manufacturers pursue this strategy in supporting the development of the

Apache Server.

It is interesting, that these commercial goals are realized with the use of roughly the

same system of legal protection which serves the hackers. Obviously, there are differences

which cannot be reconciled and this is the main reason why many companies decide to draft

their own standard form licenses rather than release their code under GNU GPL or BSD

124 Eric S. Raymond, The Magic Cauldron, 13, available at: http://www.catb.org/~esr/writings/cathedral-
bazaar/magic-cauldron/.

50

License. One important difference is that the companies are usually not pursuing any world-

wide crusade for the benefit of all users but modestly have in minds their shareholders only.

For them, Open Source is just means, not the end itself and they usually want to balance

between this and proprietary production models.

One popular idea is to make the company's products aim both markets at the same

time and issue the same software under many licenses. The examples of such multiple

licensing are Mozilla125 and OpenOffice.org,126 which allow users to choose one of two or

more licenses to comply with. One of the licenses is usually GNU General Public License or

some other model Open Source License and it can be easily accepted by Open Source

developers. For those who are afraid of the “copyleft virus” some other license is presented

and they can thus merge the product with their intellectual property without taking the risk of

having to disclose it publicly. The additional strategy of project originator may be to issue the

same code as proprietary, perhaps with some enhancements which are lacking in the Open

Source version. This is not fully in-line with Open Source ideals, but the economic goal is

clear: multiple licensing allows the use of the code by the biggest number of developers and

is one of the ways in which commercial companies secure for themselves the advantages of

“network effects”.

Companies also use Open Source as their competition strategy, to prevent others

125 For both new Mozilla source files and modifications to existing source files, triple-license scheme is
required, which allows use of the file under the terms of any one of the MPL, GNU GPL, version 2 or later,
or GNU LGPL, version 2.1 or later. For modifications to existing files already under the license in question
use of the file under the terms of either the MPL or the GNU GPL must be allowed. The choice of the
license is given to the licensee. Still, some of the Mozilla source files are licensed under the terms of other
licenses, such as the BSD. (The Mozilla Organization, mozilla.org License Policy, available at:
http://www.mozilla.org/MPL/license-policy.html)

126 OpenOffice.org uses a “dual-licensing scheme” for source-code contributions: the GNU LGPL and SISSL.
A separate documentation license, Public Documentation License (PDL), is used for most documents
published on the website without the intention of being included in the product. When the GNU GPL license
is used, the libraries and component functionality of the OpenOffice.org source code are licensed under the
GNU LGPL. (Sun Microsystems, License Page, available at: http://www.openoffice.org/license.html)

51

from gaining monopolistic position in the product market. Apart from giving their products

away free of charge, they open its code, thus gaining even more publicity. Some try to take it

even further and perceive Open Source as a way to secure market position for themselves.

Indeed, one clear result of “copyleft” clauses is that everything a competitor would add to the

software has to return to the originator of the project anyway. This allows keeping the

platform for competition and gaining the edge over other players by providing additional

services for the software. A similar idea – to establish an industry standard – is being pursued

by Sun with their SISSL, which is a license requiring the publication of all modifications to

the licensed standard. Thus, the company which has set the standard can observe how it

develops and makes profit, for example, by selling proprietary software basing on the

standard.

3.4 Model Open Source Licenses

Out of various factors influencing the role of law in the Open Source Movement, one

more specific approach towards law has to be discussed. Apart from the standardization of

the licenses owing to the introduction of FSD and OSD, the evolution of model licenses has

been a noticeable trend. The originators of new Open Source projects usually do not draft a

completely new license but rather decide to publish their code under one of the already

known and respected contracts, which are published on the Internet by their drafters and

maintained in a similar way to the model laws of such organizations as WIPO or

UNCITRAL. The model licenses are so widely known that they are usually referred to by an

abbreviated name, such as “GNU GPL” already mentioned few times in this paper.

What follows is a brief presentation of some of the model licenses, which at the

same time correspond to the Open Source projects that have been selected for the discussion

52

in this paper. Apart from underlying the phenomenon of the existence of model licenses, the

purpose of this presentation is to show how different they are, while still considered in

compliance with FSD and OSD.

The particular clauses of the licenses will be invoked in the next Chapter while

presenting and evaluating their compliance with various laws and overall legal impact. For a

very detailed comparison the reader may be referred to the publication of French Agency for

the development of electronic administration (ADAE),127 which points out as much as ten

rights usually covered by Open Source licenses and compares how the most popular ones deal

with these rights.

3.4.1 GNU General Public License

GNU General Public License (GNU GPL) is the most widely known model license,

commonly associated with Open Source. It was drafted by FSF and has been developed by

them to reach its current version 2 in 1991. It is considered to fully comply with FSD and

employs the copyleft concept.128 It has also been accepted by OSI as complying with OSD.129

According to the statistical data available at SourceForge.net, roughly 70% of Open Source

Software is licensed under GNU GPL, whereas only the popularity of GNU Lesser General

Public License exceeds 10%.130 Although both of these licenses were drafted under the

influence by Stallman and are copyrighted by FSF, not only the software belonging to the

GNU Project is licensed under their terms.

127 Agency for the development of electronic administration (ADAE), Guide to Choosing and Using Free
Software Licenses for Government and Public Sector Entities, available at:
http://www.adae.gouv.fr/upload/documents/free_software_guide.pdf.

128 Free Software Foundation, GNU General Public License, available at: http://www.fsf.org/licenses/gpl.txt.
129 GNU GPL is even expressly addressed in the annotation to OSD Sec. 9 “License Must Not Restrict Other

Software” and declared to be compatible with this requirement.
130 Open Source Technology Group, SourceForge.net: Software Map, available at:

http://sourceforge.net/softwaremap/trove_list.php?form_cat=14.

53

GNU GPL consists of preamble, precise terms and conditions and “How to Apply

These Terms to Your New Programs” section. The terms and conditions part contains 13

sections numbered from 0 to 12, which cover: definitions; rights to copy and distribute

verbatim copies of source code; rights to modify and distribute modifications of source code;

rights to copy and distribute object code; “copyleft”; assent by conduct; original licensor

grant; conflicts with other legal obligations; the right of FSF to update GNU GPL; special

conditions of combining programs licensed under other licenses; warranty disclaimer and

liability limitation.

To put it in a nutshell, GNU GPL allows the licensee to use, modify and distribute

the program in source or object code for any purpose. However, it requires that the access to

source code be always possible. What is more important, by the “copyleft” clause in Sec. 4,

GNU GPL forbids licensee to “copy, modify, sublicense, or distribute the Program except as

expressly provided under [GNU GPL]”. This clause attempts to make any program once

released under GNU GPL remain distributed under its terms whoever distributes it.

“Copyleft” by virtue of Sec. 2 b) extends to “any work ..., that in whole or in part contains or

is derived from the Program or any part thereof”.

For those who would like to make concessions to the proprietary software world,

FSF introduced GNU Lesser General Public License (GNU LGPL), which main feature is

that it allows linking with other proprietary program.131 It is designed to cover software

libraries, which are collections “of software functions and/or data prepared so as to be

conveniently linked with application programs to form executables.”132 It is described by FSF

131 Free Software Foundation, GNU Lesser General Public License, available at:
http://www.fsf.org/copyleft/lesser.txt.

132 Id.

54

as “not a strong copyleft license, because it permits linking with non-free modules.”133

Interestingly, GNU GPL itself is copyrighted by FSF, which allows for copying and

distributing verbatim copies of it but not for changing. It is an obvious attempt to promote

standardization in Open Source licensing by making GNU GPL the model contract. Indeed,

the majority of developers simply put notices of GPL in their programs, according to the

“How to Apply These Terms to Your New Programs” section. For example, Linux kernel is

released under the terms of GPL, preceded by the following statement of Torvalds:

NOTE! This copyright does not cover user programs that use kernel services by

normal system calls - this is merely considered normal use of the kernel, and does

not fall under the heading of “derived work”. Also note that the GPL below is

copyrighted by the Free Software Foundation, but the instance of code that it refers

to (the Linux kernel) is copyrighted by me and others who actually wrote it.134

3.4.2 BSD License

BSD License135 has initially applied to BSD operating system distributions issued by

the University of Berkeley. Later on, after a small modification136 it has become a model

license agreement and was adopted by the developers of FreeBSD, NetBSD, OpenBSD and

other projects not necessarily connected with the University. According to SourceForge.net, it

is now the third most popular Open Source license after GNU GPL and GNU LGPL.137

133 Free Software Foundation, FN 99.
134 Linus Torvalds, Note to Linux Kernel, available at: http://www.linux.de/linux/gnu.html. The note also states

that the only valid version of the GPL as far as the kernel is concerned is this license (i.e. v2), unless
expressly otherwise stated.

135 The text of BSD License may be found at: http://www.xfree86.org/3.3.6/COPYRIGHT2.html.
136 The original BSD license included the following introductory clause, which is not present in the model

license:
Copyright (c) 1993 The Regents of the University of California. All rights reserved.
This software was developed by the Computer Systems Engineering group at Lawrence Berkeley
Laboratory under DARPA contract BG 91-66 and contributed to Berkeley.
All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by the University of California, Lawrence
Berkeley Laboratory.

137 Open Source Technology Group, FN 130.

55

In comparison with GNU licenses, BSD is a very short contract. FSF describes it as

“a simple, permissive non-copyleft free software license, compatible with the GNU GPL.”138

The BSD License permits redistribution and use in source and binary forms, with or without

modifications. The licensee is obliged to retain the original author's copyright notice,

conditions of the license itself, the disclaimer of warranties and damage limitation.

Additionally, the use of the author's name to endorse or promote products derived from the

software covered by the license is prohibited without specific prior written permission.

3.4.3 Apache Software License

Until February 2004, the Server was available for downloading by everyone under

the terms of Apache Software License, Version 1.1.139 It was a short contract, allowing

redistribution and use in source and binary forms, with or without modifications. Licensee

deciding to redistribute, however, had to retain the copyright notice of the Apache Software

Foundation, the list of conditions of the License and the notice stating: “This product includes

software developed by the Apache Software Foundation (http://www.apache.org/).”140 The

License required prior permission for the use of “Apache” in the names of the products

derived from the server. It also included disclaimer of warranty and liability. Thus, it was

almost the exact copy of BSD License.

In February 2004, the Apache Group introduced a new license – Apache Software

License, Version 2.0. It is substantially longer now, contains nine sections and an appendix

explaining how to apply the license. The sections cover: definitions; grant of copyright and

patent license; redistribution right; coverage of subsequent contributions; trademarks;

138 Free Software Foundation, FN 99.
139 The Apache Software Foundation, Apache License Version 2.0, available at:

http://www.apache.org/licenses/LICENSE-2.0
140 Id. at Sec. 3.

56

warranty disclaimer and liability limitation; possibility of accepting warranty or liability. The

patent license grant in Sec. 3 contains a termination clause in case of the licensee's patent

litigation alleging that the licensed program constitutes patent infringement. This patent

license termination clause is considered by FSF the reason for the incompatibility between

GNU GPL and the Apache License.

The Apache License allows to reproduce licensed program in source or object code

and it is also possible to publish the modifications or derivative works under a different

license. One should note that the Apache License contains its own definition of “derivative

work”. The license grant contains permission to sublicense the program, but there is no

explicit mention that the redistribution of the originally licensed program should be covered

by the Apache License or any other particular terms. Thus, it does not contain an express

“copyleft” clause.141 However, the redistribution conditions demand, inter alia, to give the

recipients the copy of the Apache License and to retain copyright and other notices (Sec. 4 a.

and 4 c.). It is allowed to add one's own attribution notices within derivative works, provided

that such additional attribution notices cannot be construed as modifying the License (Sec. 4

d.). Since the distribution under different license is allowed for modifications and derivative

works only, it can be argued a contrario, that it is prohibited with regard to the original

program. Thus, it may be concluded that the Apache License, Version 2.0 contains a weak

“copyleft” clause.

3.4.4 Mozilla Public License

Mozilla Public License, Version 1.1 is one of the licenses under which the software

developed in Mozilla Project is released. The license is classified by FSF as “not a strong

141 FSF classifications remain silent as to whether the license is a “copyleft” or not.

57

copyleft” free software license incompatible with the GNU GPL.142 MPL is quite complex

and addresses many issues that the previously discussed licenses did not expressly regulate. It

contains thirteen sections, which cover: definitions; rights to the source code; distribution

obligations; conflict with other legal obligations; the license subject matter; the right of

Mozilla Foundation to issue new versions of the license; warranty disclaimer; termination;

liability limitation; the rights of U.S. government end-users; miscellaneous provisions;

responsibility distribution among the parties; the possibility of multiple-licensing. Exhibit A

to the license contains a notice to be placed in files distributed under it.

Similarly to Apache License, MPL grants both copyright and patent license. It

distinguishes between “initial developer” and “contributors” and covers their license grants in

separate subsections (Sec. 2.1 and Sec. 2.2 respectively). The license addresses third party

claims and requires contributors to notify about these they know of in a special file (Sec. 3.4.

(a)). MPL allows licensees to distribute program not in the source code and allows such

distribution to be subject to different licenses, which is intended to make possible the

integration of MPL-covered code into other projects and even proprietary software. Such

different license may, for example, include different payment or support terms and even use

restrictions.143 Miscellaneous provisions in Sec. 11 contain, among others, choice of

Californian law clause and choice of Californian courts. They also expressly exclude the

application of UN Convention on Contracts for the International Sale of Goods but are silent

on the applicability of UCC Art. 2. Additionally, they exclude the applicability of “[a]ny law

or regulation which provides that the language of a contract shall be construed against the

142 Free Software Foundation, FN 99.
143 The Mozilla Organization, Annotated Mozilla Public License, Annotation to Sec. 3.6, available at:

http://www.mozilla.org/MPL/MPL-1.1-annotated.html.

58

drafter.”

MPL contains “copyleft” clause (Sec. 3.1) different from the one included in GNU

GPL. The scope of it is delimited by the understanding of “Modifications” defined in Sec.

1.9.144 and further explained in MPL-FAQ, which states that modifications are “[a]ny changes

to MPLed files, or new files into which MPLed code has been copied New files

containing only your code are not Modifications, and not covered by the MPL.” It is

important to note that MPL does not refer to “derivative works”, a copyright law term of art,

in setting the scope of its “copyleft”.

3.4.5 Sun Industry Standards Source License

Sun Industry Standards Source License, Version 1.1 (SISSL)145 has been drafted by

Sun Microsystems and is used, for example, in the development of their OpenOffice.org

Open Source project. It is the least popular model license out of discussed in this paper but

nonetheless triggers interesting legal issues. Sun has issued some other standard license

agreements, such as Sun Public License, Sun Community Source License or Sun Solaris

Source Code (Foundation Release), Version 1.1 License.146

SISSL is very much similar to MPL and some sections are even copied word-by-

word but there are differences. The most important one concerns the “copyleft” clause

included in SISSL, which is different from these in GNU GPL or MPL. It is spelled out in

144 MPL Sec. 1.9 "Modifications" means any addition to or deletion from the substance or structure of either the
Original Code or any previous Modifications. When Covered Code is released as a series of files, a
Modification is:
A. Any addition to or deletion from the contents of a file containing Original Code or previous
Modifications.
B. Any new file that contains any part of the Original Code or previous Modifications.

145 Sun Microsystems, Sun Industry Standards Source License – Version 1.1, available at:
http://www.openoffice.org/licenses/sissl_license.html.

146 The last two licenses are declared by FSF as non-free software licenses.

59

Sec. 3.1 and requires among other things, the modifications147 to comply with Standards set

out in Exhibit B to the license. If the modifications do not meet such requirements, SISSL

imposes on the licensee the obligation to publish information necessary to identify the

differences with Standards. As it is explained in FAQ, “[SISSL] allows the user to do what

they like with the source base, modify it, extend it, etc., but [compatibility must be

maintained].”148 At the same time, SISSL as well as MPL allows for integrating the licensed

program into a larger work and issuing such work under different license.

3.5 Intellectual Property Rights Management in Open Source Movement

In the case of proprietary software, the assignment of copyright to one entity is

common. Rights in employees' contributions are often transferred to their employers in

employment contracts or even by the law itself. Assignments between cooperating developers

are extensively covered in their contracts. Open Source is a completely different software

development model and precisely because of that its legal situation could often be much more

complicated. As it was already indicated it is customary for every project to have at least one

coordinator, who is considered by the community to “own” the project, i.e. to have power of

deciding about its development; what to change or add in the program. Above all

coordinators have unquestioned power of releasing newly developed versions of their

projects.

Legally speaking; however, in the absence of any agreement to the contrary, the

assignment of copyrights is governed by the applicable copyright statutes. Thus, if a

contribution fulfills copyrightability requirements the rights in it should be attributed to the

particular contributor. If it forms a part of a bigger work it may also be the case that this work

147 The definition of “Modifications” in SISSL is almost exactly the same as the one in MPL.
148 Sun Microsystems, FAQs, available at: http://www.openoffice.org/FAQs/faq-licensing.html.

60

is subject to joint copyright of all contributors, whereas the producer could be considered to

hold copyrights to the whole. Logically then, the producer's copyrights should be attributed to

the project coordinator but even in such a case, there is the issue of separate copyrights in

particular contributions. For example, the most important piece of Open Source Software –

the Linux kernel is “copyrighted by [Linus Torvalds] and others who actually wrote it”,149

which means the necessity of considering copyrights of many hackers from around the world,

although only few persons take the major decisions concerning development.

Instead of relying on the coordinator's authority and moral norms only, contributors

to an Open Source project may transfer their rights to one trustworthy entity or retain but

expressly license them. For example, Free Software Foundation encourages developers to

transfer copyrights in their respective projects to the foundation, which certainly helps to

clarify legal situation of Open Source projects in general. For some time now, many Open

Source projects' coordinators have also started employing some intellectual property rights

management schemes. This is good, because the lack of diligence may result in infringement

of contributors' or third parties' rights, which may happen if there is no legally valid

contribution (assignment of rights or license) or its scope does not encompass the publication

of the source code. In the worst case the contributed code may in fact belong to someone else,

such as the contributor's employer by the virtue of the employment contract.

Thus, in the case of major Open Source projects, instead of the coordinator being a

natural person, there is some kind of entity formed, such as the Apache Software Foundation

or Mozilla Foundation.150 The Apache Project has evolved from the loose cooperation of

149 Torvalds, FN 134.
150 Similar entities stand behind such purely non-profit projects as Debian (Software in the Public Interest, Inc.)

or Slackware (Slackware Linux, Inc.)

61

contributors exchanging “patches” to the original NCSA server but currently it employs quite

sophisticated system for managing intellectual property rights of project participants. This

system is based on the hierarchical project participants organization. Although everyone's

contributions are welcome, only “commiters” and those higher in the structure are allowed

the write access to the code repository. To be a “commiter” one has to sign a Contributor

License Agreement (CLA).151 The CLA covers all past, present and future contributions to the

project and grants to the Apache Foundation the license to use, execute, prepare derivative

works and distribute them.

The farther reaching approach is visible in the case of Open Source projects

coordinated by commercial companies. For example, contributors to the OpenOffice.org

project have to submit the Joint Copyright Assignment form (JCA).152 JCA is not a license

but a copyright assignment and purports to “assign to Sun Microsystems joint ownership in

all worldwide common law and statutory rights associated with the copyrights, copyright

application, copyright registration and moral rights in the contribution to the extent allowable

under applicable local laws and copyright conventions.”153 However, assignor retains the right

to use the contribution for his own purposes.154

Whichever approach is taken in a particular project, it is important that the

coordinator at all times knew which part of the code is copyrighted by whom and what is the

151 The Apache Software Foundation, Individual Contributor License Agreement, available at:
http://www.apache.org/licenses/cla.txt

152 Sun Microsystems, OpenOffice.org Open Source Project Joint Copyright Assignment by Contributor,
available at: http://www.openoffice.org/licenses/jca.pdf.

153 JCA Sec. 2. Before introducing JCA, Sun required from contributors to transfer all copyrights, just as it is
the case with FSF and contributors to the GNU Project. According to the Sun’s statement published on the
OpenOffice.org FAQ Web page (FN 148), signing JCA by the contributor who previously signed copyright
assignment form supersedes this agreement. Sun also holds that there is no process to cancel JCA in order to
protect the code base so everyone who uses it can depend on its continued functionality; however,
ownership of the contributions that were not accepted and included in the suite “reverts” to the contributor.

154 JCA Sec. 2

62

legal basis for the code's inclusion. The least what could be done is to insist on the

contributions being expressly licensed to the project under one of the model Open Source

licenses. The supply of legal code obviously lies in the coordinator's interest because the

users, endangered by infringement suits instigated by the lawful copyright holders, would

quickly turn away from the project. But it is more important that the negligence of the

coordinator could result in the loss for the whole Open Source community, even if he himself

was protected by warranty disclaimers. Fewer hackers would be willing to contribute and

there would be no clear guidance whether it is possible to fork the project without risking the

inheritance of illegal code. On the other hand, this may not be so burdensome in every case,

because the public availability of source codes is a big help in determining whether there

really was an infringement. Still, there is no reason why the Open Source project coordinator

should scrutinize the inflowing code less meticulously than proprietary software developer.

3.6 Evaluation of Role of Law in Development of Open Source Software

To sum up, the most important legal difference between proprietary software and

Open Source is the scope of rights given to the users. It is basically true that developers of the

former limit users' rights in order to secure market position for themselves, whereas the latter

are community-oriented and the system designed by them serves all the players. But the

analysis contained in the previous sections shows that this is a far-reaching generalization. In

fact, although Open Source Movement as a whole may be considered the opposite of

proprietary software, it is not homogeneous. Its supporters differ as to their ideologies,

motivations, organization structures and, as an implication, the use they make of law. There

are moralists, such as Stallman and pragmatists represented mainly by OSI. Other division

lines run between altruists merrily participating in the hacker's culture and profit-driven

63

commercial companies designing various Open Source marketing models.

Somehow, all of them are able to work together and produce the software that still

can be called “Open Source”. To certain extent it is possible because FSF and OSI are quite

flexible in the scrutiny of licenses, although the former is backed up with a lot of ideology

whereas the latter is presented as completely pragmatical. Both of them; however, agree on a

common set of core rules for all the players involved in the Open Source Movement, which

oblige to respect users' rights. They can be ideologized or commercialized, but not limited.

Furthermore, the evolution of model licenses and the practical dominance of GNU GPL also

serve as the movement's integrators. Apart from particular developers' savings on the legal

fees for writing a new license, the use of model ones contributes towards legal certainty,

standardization and allows for the cooperation and distribution of the software to be executed

faster.

The hackers follow specific social norms and treat legal action as the last resort. This

is one more generalization, because the cooperation between hackers is often highly

formalized and the coordinators of major Open Source projects have provided for quite

sophisticated intellectual property rights management schemes, whereas even the smaller

projects make much ado about their use of, say, GNU GPL. The main aim is to protect the

community from the threat of proprietarization of the code and to allow the continuation of

the moral crusade for the free software for all. On the other hand, commercial companies

have found ways of making the legal use of Open Source Software to gain market position

and even to maintain concessions for the still popular proprietary model. For them, licensing

is of much importance too.

In the end, the preceding discussion supports the most important conclusion on the

64

role of law in the development of Open Source Software, which is that the law as used by

Open Source Movement protects interests of individual users and does not leave them at the

mercy of the sellers by making just mere consumers out of them, as it is the case with the law

and technology of proprietary software.

65

CHAPTER 4 - LEGAL CONTROVERSIES OF OPEN SOURCE LICENSING

From the legal point of view, the major goals of the participants in Open Source

Movement presented in the previous Chapter are realized with the use of specific software

licenses, such as the model GNU GPL. Logically, the next issue that will be discussed is

whether these licenses are valid, enforceable and whether they can be executed according to

the intent of the licensors. In other words, the current Chapter is devoted to the analysis of the

major legal controversies surrounding Open Source Movement, which have been identified in

the course of research. Apart from analyzing threats, it also contains discussion on the

consequences of the licenses' enforceability and attempts to contribute towards recently

heated debate on software patents.

4.1 Contract Law and Open Source Licensing

As it has already been described, the issue of legal effect of Open Source licensing is

a part of the wider debate concerning “-wrap” contracts in the electronic age, which have

developed among legal scholars and practitioners for some time now. To the best knowledge

of the author of this paper, in no legal system are there any special provisions governing the

validity and enforceability of Open Source licenses and few courts have looked at this

particular issue so far. The only court decision concerning an Open Source license was

rendered in Germany.155 In this case, the court confirmed preliminary injunction issued

against a company that had infringed GNU GPL by not publishing source codes of their

distributed modifications to an Open Source program. The decision contains numerous

155 Landgericht München, 19.5.2004, 21 O 6123/04, unofficial English translation available at:
http://www.groklaw.net/article.php?story=20040725150736471. The plaintiff in this case has reached
settlements in similar disputes before, without having to resort to the court. See. e.g. Harald Welte, netfilter
project GPL settlement with Securepoint, available at: http://www.netfilter.org/news/2004-03-25-
securepoint-gpl.html.

66

remarkable holdings of the court, starting from the conclusion that the issuance of software

under GNU GPL does not constitute a waiver of copyright. Moreover, the court found that a

web page reference to the publicly available terms of license constitutes a valid mean of

incorporating these terms to the parties' contract. This is particularly important when

compared to the holding in the American case Specht v. Netscape, presented below.

The German decision contains the material analysis of GNU GPL clauses as well.

The court concluded that the automatic termination of rights upon the licensee's infringement

provided for in GNU GPL Sec. 4 is a permissible limitation of rights under German

Copyright Law because neither it affects third parties' rights (sublicensees), nor the

marketability of the licensed rights. It is also not too burdensome for the infringing party

itself, as the rights under the license can be reacquired at any time by the acceptance and

compliance with GNU GPL. Moreover, according to the court if there were bases for finding

invalidity of a clause or the whole GNU GPL then it should be concluded that no agreement

has been reached. As the consequence, any use of the software would be illegal and no danger

of proprietarization or closing the code would arise. Saying so, the court expressly supports

the rationale of GNU GPL Sec. 5 and of Moglen, whose position is that there are no gains

from infringement, which would not exist if the license were followed.156

In the U.S., where Open Source licenses originated, so far they have been mostly

subject to academic discussion. The USL v. BSDI case presented above ended with settlement

before the court had the possibility to consider its merits. Recent litigation, Progress

Software Corp. v. MySQL AB157 directly concerned breach of GNU GPL license but was

settled too. Before settlement, the court agreed that much depends on the meaning of

156 Moglen, FN 120 and FN 121.
157 195 F. Supp. 2d 328 (D. Mass. 2002) (preliminary injunction).

67

“derivative works” under GNU GPL, but when issuing preliminary injunction it did not rule

on whether the Gemini software linked to MySQL was covered by the license. The merits are

likely to be reached in the SCO v. IBM158 dispute, which is to be decided in 2005. Briefly

speaking, the parties in this case are two companies that worked together on the development

of a proprietary UNIX-like system. The defendant has allegedly contributed their proprietary

improvements to the Linux kernel. At the time of this writing, it was too early to determine

whether the validity of GNU GPL would be one of the issues of the case.

There is one U.S. court decision, Planetary Motion, Inc. v. Techsplosion, Inc.,159

concerning trademark infringement of CoolMail program, which contains some dicta on

GNU General Public License. The court treated this license favorably, saying that “[s]oftware

distributed pursuant to such a license is not necessarily ceded to the public domain and the

licensor purports to retain ownership rights.”160 According to the court, “the license itself is

evidence of [the copyright owner's] efforts to control the use of the “CoolMail” mark in

connection with the Software.”161

Thus, in the absence of any tailored statutes or elaborate case law, the existing law

has to be relied upon. At the very least, the applicability of the legal rules discussed in the

following subsections should be considered.

4.1.1 U.S. Case Law on Software Licensing

American courts deal with the issue at least from the early 90s. One of the first

decisions, Step-Saver Data Sys., Inc. v. Wyse Techn.,162 concerned a “shrink-wrap” software

158 The SCO Group, Inc. v. International Business Machines, No. 2:03cv0294 (Plaintiff's Amended Complaint)
(D. Utah, filed June 16, 2003).

159 261 F.3d 1188 (11th Circ. (Fla.), 2001).
160 Id. at 1198.
161 Id. at FN 16.
162 939 F.2d 91 (3d Cir. 1991).

68

license and did not look at it favorably. The court refused to treat “shrink-wrap” license terms

as incorporated into the parties’ contract. The terms were not expressly agreed upon, only

referred to by the notice on the box, stating that opening constitutes assent. The court found

that the contract was formed over the phone and treated license as additional terms materially

altering the agreement, which pursuant to UCC 2-207(2) do not become part of the contract.

The court refused to consider the vendor’s acceptance conditional upon the buyer’s assent to

the “shrink-wrap” license, because the vendor did not show enough “unwillingness to

proceed with the transaction unless the additional or different terms are included in the

contract.”163 It must be noted, however, that before shipment the vendor assured that the

“shrink-wrap” license would not apply in this particular case, and its terms were substantially

different from those negotiated by the parties before the transaction.

“Shrink-wrap” licenses accompanying the sale of computer programs in retail stores

were more favorably looked upon in the landmark case ProCD, Inc. v. Zeidenberg.164 The

issue presented to Judge Easterbrook was whether the defendant breached the contract by

making commercial use of software, which was expressly prohibited by the license. The court

noted that the installation and use of the program was possible only after the acceptance of

the license, that there was a reference to it outside of the box and that there was refund

possibility if its terms were found unacceptable.165 Thus, the court held that one of the terms

to which the buyer agreed by purchasing the software is that the transaction was subject to a

license.166 Judge Easterbrook strengthened his analysis by comparing “shrink-wrap”

contracting with other transactions where payment precedes making all terms known to the

163 Id. at 103.
164 86 F.3d 1447 (7th Cir. 1996).
165 Id. at 1452.
166 Id. at 1450.

69

buyer. Moreover, he treated such method of concluding contracts as less troublesome than the

negotiation of all terms beforehand and allowed them for economical reasons.

Further guidelines on how the contracting procedure should look like for the license

to bind the end-user may be found in M.A. Mortenson Co. v. Timberline Software Corp.167

The court repeated after ProCD, that money-now-terms-later agreements are common and it

is also generally expected for software to be covered by license.168 The court relied on UCC

2-204 which allows parties to form a contract in “any manner sufficient to show agreement”

and found such agreement with license terms manifested by the installation and use of

software by the buyer. As a result, every license term which was legal and “not found to be

unconscionable” was held to bind the parties, even if it were not individually negotiated

beforehand.169 The court attributed much importance to the fact that the notice of license was

printed outside the box, on the hardware supplied together with software and presented on the

screen during the use of the program.

“Click-wrap” agreements were put by the U.S. courts under a similar scrutiny. In

Hotmail Corp. v. Van$ Money Pie, Inc.170 making available of e-mail account for users after

their clicking on the “I agree” button under the terms of use presented on screen was found

sufficient for the court to issue a preliminary injunction against actions expressly prohibited

in these terms. Similarly, in Caspi v. Microsoft Network, L.L.C.171 the court enforced the

“click-wrap” contract because adequate notice and enough time to review and withdraw was

provided.

Some attention was given to the form of communicating assent in Specht v.
167 970 P.2d 803 (Wash. Ct. App. 1999), aff'd, 998 P.2d 305 (Wash. 2000)
168 970 P.2d 803, 808
169 Id. at 809.
170 47 U.S.P.Q.2d 1020 (N.D. Cal 1998).
171 732 A.2d 528 (N.J. Super Ct. App. Div. 1999), cert. denied, 743 A.2d. 851 (1999).

70

Netscape Communications Corp.172 and in Ticketmaster Corp. v. Tickets.com, Inc.173 Both

concerned “browse-wrap” agreements. In Specht the download page for the program at issue

contained notice merely asking users to review and agree to the terms of software license

before downloading and installing. The actual license text was accessible only after the user

scrolled down the page and clicked on the link provided there, but it was possible to

download, install and use the program without doing this. The request to read and accept the

license was not treated by the court as a condition but as an invitation only. As there was no

assent communicated in any way, the contract was held not to include additional terms

contained in the license. Similarly, in Ticketmaster, there was no binding contract found by

the court in the case when terms of use were hyperlinked to in the small print and users were

not forced to accept it before accessing the web page.

The U.S. courts; however, seem not to have decided where to draw the borderline.

For example, a “browse-wrap” agreement was enough for the court to issue a preliminary

injunction in Register.com, Inc. v. Verio, Inc.174 Even if there was no clear communication of

assent, such as clicking on an “I agree” button, the presentation of the terms of use together

with the results of the service (WhoIs database query) made the court conclude that it was

“likely” for a “browse-wrap” contract to have been concluded. In an earlier case, EF Cultural

Travel BV v. Zefer Corp175 the court pointed out that it is possible for a website owner to bind

users with his terms of use by saying so on the webpage or providing for a clearly marked

link to them. A software license concluded in a similar way, which granted rights to create

and distribute additional levels of a popular computer game, was held to bind parties in

172 306 F.3d 17 (2nd Cir. (N.Y.) 2002).
173 54 U.S.P.Q.2d (BNA) 1344 (C.D. Cal. 2000).
174 2004 WL 103400, 69 U.S.P.Q.2d 1545 (C.A.2 (N.Y.), 2004).
175 2003 U.S. App. LEXIS 1336 (1st Cir. 2003).

71

Microstar v. Formgen, Inc.,176 although neither reading nor accepting it was the precondition

of using the level editor program. The license was contained in LICENSE.DOC file on the

disk together with other program’s files and was only referred to in the opening screen of the

program. It was not presented on the computer screen, there was no notice on the box and no

fixed period to return and withdraw. The defendant argued that no average user would access

the license file, but the court did not find this persuasive. At the same time the court noted

that movants could have done “a better job” in ensuring the users’ assent to the license.177

These three cases do not fit neatly in the previously described case law, but the courts there

also paid much attention whether the intent to bind with certain terms was clearly

communicated (as in EF Cultural Travel) or whether the user knew about their existence. For

example, it seems to have been decisive in Register that the defendant used the service for a

number of times and in Microstar that the knowledge of the license was actually admitted by

the licensee.

The existing case law does not provide clearcut rules and it has to be kept in mind

that the issue of enforceability and validity of “-wrap” contracts is still unresolved.178

However, it seems agreed that in order to secure high probability of contract enforcement, the

licensor should provide for clear communications between the parties. Namely, the existence

of the license must be made known to the buyer at the time of purchase (e.g. by a notice on

the box). Also his assent must be clearly communicated (e.g. clicking on an “I agree” button,

mere availability of license on a linked page, as in Specht, is not enough). If these conditions

176 942 F. Supp. 1312 (S.D. Cal. 1996), aff'd in part, rev'd in part on other grounds, 154 F.3d 1107 (9th Cir.
1998).

177 942 F. Supp. 1312, 1318.
178 For more caselaw analysis see: Kevin W. Grierson, Enforceability of "Clickwrap" or "Shrinkwrap"

Agreements Common in Computer Software, Hardware, and Internet Transactions, 106 AMERICAN LAW

REPORTS 5TH 309.

72

are fulfilled, the U.S. courts are likely to hold “shrink-wrap” and “click-wrap” agreements

valid and enforceable, although their terms are not available to the seller at the time of

payment or even delivery. Still, there are additional important factors that may be taken into

account by the courts, such as failure to return the purchased software for refund after the

term indicated in the license, to mention only one of them.

4.1.2 UCITA and Relevant European Union Directives

The inadequacies of existing case law rules for the reality of contracting in the

electronic age together with many doubts resulting from the application of UCC Art. 2 (Sales

of goods) to software licenses (discussed in subsequent section) has triggered attempts to

develop a special statute. At first there was the proposal of a new UCC Article – 2B

(licenses), but in the late 90s it transformed into a separate Uniform Computer Information

Transactions Act (UCITA). It is presented now as a coherent and uniform body of law for

computer information transactions, including software licenses. UCITA provides for

thorough definitions and delimitation of its scope (Part 1), regulates contract formation and

terms (Part 2), its construction (Part 3), warranties (Part 4), transfer or interests and rights

(Part 5), performance (Part 6), breach of contract (Part 7) and remedies (Part 8). The last Part

(Part 9) contains miscellaneous provisions.

For the contract formation, UCITA adopts so called “layered” or “rolling” contracts

theory, which does not treat contracting as a single event.179 It relies on cases such as ProCD

or MA Mortenson that recognize that contracts are often formed over time by the parties,

whose expectations are that terms will follow or be developed after performance begins.180

179 Robert Hillman, Rolling Contracts, 71 FORDHAM LAW REVIEW 743 (2002).
180 UCITA Sec. 208 cmt. 3 (Approved Official Draft), available at:

http://www.law.upenn.edu/bll/ulc/ucita/2002final.htm.

73

Pursuant to UCITA Sec. 209(a) a mass-market license is only effective if the licensee agrees

to it, such as by manifesting assent, before or during initial use or access to program. An

elaborate understanding of “manifesting assent” is given in Sec. 112. However, a term may

not be binding even if agreed upon when, for example, there was no opportunity to review it

before agreeing or it was unavailable after the agreement (in nonelectronic or electronic

format capable of being printed or stored for review).181 Thus, hiding the license in small print

or granting the access to program in an malicious attempt to induce infringement would not

be protected practices.

UCITA would make most of the software licenses enforceable but only Virginia and

Maryland adopted it and many other states decided to prevent choice of law clauses resulting

in the application of UCITA by making them null and void.182 For those jurisdictions where

UCITA is not the law, it may be helpful that the court in Specht concluded that under either

UCC Art. 2, common law or UCITA the result would be the same.

The validity and enforceability of software licenses in Europe have to be evaluated

for each state separately and in the light of its national law. American law may play some role

to the extent the licenses contain choice of law clauses, such as these included in MPL or

SISSL. There are no harmonized provisions at the level of the European Union, which would

refer directly to software licenses, but there are many consumer protection acts that have to be

taken under consideration. Some of them are discussed in the section on the liability of Open

Source developers.

European directives, which may be referred to at this point are: the Directive on the

181 UCITA Sec. 209(a)(1)-(4).
182 Grierson, FN 178.

74

protection of consumers in respect of distance contracts183 and the Directive on certain legal

aspects of information society services, in particular electronic commerce, in the Internal

Market (E-Commerce Directive).184 Unfortunately, they are not tailored for mass-market

licenses and seem better fit for more traditionally concluded contracts by the exchange of

offer and acceptance. Moreover, they are not intended to regulate the formation issues

discussed in this section. However, they include some rules relevant for the construction of

contracts, such as the requirement to provide the consumers with adequate prior information.

Additional particularly interesting obligation is the one of the suppliers to make their

commercial communications clearly identifiable as such by the suppliers (E-Commerce

Directive Art. 6 (a)).

4.1.3 Applicability of Sales of Goods Laws

Computer programs, as all other information, are intangibles. They certainly may be

embodied in a fixed medium, such as a CD or hard disk, but still the protection of intellectual

property laws has as its subject the effect of the author's creativity, not the movable fixation.

On the other hand, the program, as any other copyrighted work, after its fixation becomes a

tangible thing and may be subject to the sales contract. Software licensing agreements;

however, usually expressly state that the software is not sold but licensed only. The title to

the program is not transferred to the buyer but he is merely granted with some limited rights,

such as the right of use. There seems to be much difficulty in determining what exactly forms

the subject of software transactions and which law is to be applied, especially in jurisdictions

having special provisions regulating sales of goods.

In the international context, the applicability of UN Convention on Contracts for the

183 97/7/EC, OJ L 144, 04/06/1997, P. 19.
184 2000/31/EC, OJ L 178, 17/07/2000, P. 1.

75

International Sale of Goods (CISG) must be taken under consideration. At first glance CISG

may be considered applicable, as many software transactions are concluded between persons

having places of business in different states (CISG Art. 1) and especially in the trade in Open

Source Software many programs are acquired not for personal, family or household use

(expressly excluded by CISG Art. 2(a)). The final determination on CISG applicability

depends mainly on the understanding given to “contracts of sale of goods”, which constitute

the subject matter of CISG (Art. 1) but are nowhere explicitly defined. The discussion on

whether the license constitutes sale resembles the one on UCC Art. 2 presented below.

Oosterbaan raised that even if no intellectual property rights are sold and despite software is

intangible in any case, the fact that in practice licenses are granted for unspecified period of

time and for a single payment together with the sale of a copy allows to conclude that the

parties enter into a sales contract.185 Moreover, it is agreed that if CISG applies to transactions

in software embodied in tangible media then there is no reason why electronically transferred

software should be excluded.186 Diedrich concludes that “any item that can be commercially

sold and in which property can be passed on and which is not explicitly excluded from the

CISG's sphere of application”187 constitutes a good. Not all Open Source developers are aware

of that and only few of them draft their licenses to expressly exclude the applicability of

CISG – the examples are MPL and SISSL.

The effect of CISG's applicability is crucial for contract formation and parties'

obligations determinations. For example, whether the “shrink-wrap” or “click-wrap” license

185 Dinant T. Oosterbaan, Shrink-wrap License Agreements in the Netherlands, in: ERIK MOSESSON ED., SOFTWARE

PROCUREMENT NORDIC YEARBOOK OF LAW AND INFORMATICS 1992 , 105, 107-108 (Norstedts Juridik, Stockholm,
1992)

186 Trevor Cox, Chaos versus uniformity: the divergent views of software in the International Community, 4
VINDOBONA JOURNAL OF INTERNATIONAL COMMERCIAL LAW AND ARBITRATION 3 (2000).

187 Frank Diedrich, The CISG and Computer Software Revisited, 6 VINDIBONA JOURNAL SUPPLEMENT 55, 64 (2002).

76

is incorporated into the contract depends on successful communications of offer and

acceptance between the parties. In the case of ordering software over the phone or otherwise

in a “shrinkwrapped” form, such order may constitute communications of the parties

preceding the presentation of the license. Thus, the license can be treated as a counter-offer

(CISG Art. 19 (1)). Since the license terms would materially change the offer, it is not

possible to apply the “last shot” rule of CISG Art. 19(3). In other cases, such as “click-wrap”

transactions the license would usually form a straightforward offer. In either case, an offer or

a counter-offer is effective only if it reaches the offeree (CISG Art. 15). Still, the contract is

concluded only after the acceptance of an offer becomes effective (CISG Art. 23).188 As in the

practice of Open Source transactions programs are often simply downloaded from the Internet

without communicating acceptance to the license terms, the basis for a valid contract can be

found only in CISG Art. 18(3) which allows for indication of assent by performing an act.

This may be helpful for Open Source licenses, which purport to treat the use of software as

the assent to their terms. All then depends on the actual effectiveness of the communication

of the license, in the language of CISG, whether it has reached the offeree.

One more important consequence of the applicability of CISG is the seller's

obligation under Art. 42 (1) to deliver goods free from any right or claim of a third party

based on industrial property or other intellectual property. By the virtue of Art. 42 (2), this

obligation does not extend to cases where at the time of the conclusion of the contract the

buyer knew or could not have been unaware of the right or claim. According to Diedrich, if

only the seller is given a proper notice it is possible for the goods to be delivered together
188 There is a CISG-Advisory Council Opinion on Electronic Communications under CISG (CISG-AC,

Opinion no. 1, Electronic Communications under CISG, 15 August 2003, available at:
http://www.cisg.law.pace.edu/cisg/CISG-AC-op1.html), but it is of little guidance for Open Source as well
as other mass-market software developers, because it mostly concerns the email exchange of parties'
communications.

77

with intellectual property rights limitations, such as the license.189 In fact there are Open

Source licenses which expressly address third-party claims to software, such as MPL and

SISSL, but at the same time they exclude the applicability of CISG. The Apache License

contains the disclaimer of warranty which excludes inter alia warranty of title. GNU GPL

and BSD License do not specifically refer to third-party claims or title warranties, but they

purport to exclude any express or implied warranties.

In the U.S., many courts that deal with “-wrap” software licenses have strongly

relied on the UCC Art. 2 “Sales of goods”. Pursuant to UCC 2-102, the whole Art. 2 applies

to “transactions in goods”, which are defined by UCC 2-105 as “movables”; “things in

action” are at the same time expressly excluded. Furthermore, according to UCC 2-106 “sale

consists in the passing of title from the seller to the buyer for a price”. These definitions are

the exact opposite of software licenses. It is possible; however, to treat software transactions

as mixed contracts involving both goods and services and resort to various tests developed by

the judiciary, which base the applicability of the UCC Art. 2 on the predominant purpose of

transaction or the totality of circumstances.190 Some courts did not enter into such

sophisticated reasoning and simply assumed the applicability of UCC Art. 2 without

providing any particular rationale. This was the case in such important decisions as Step-

Saver or ProCD, whereas in I.LAN Systems, Inc. v. Netscout Service Level Corp.191 the court

noted that software licenses exist in a “legislative void” and assumed that UCC Art. 2

governs them only “for the time being”.192

Some courts looked at software transactions more closely and ended up with not

189 Diedrich, FN 187 at 70.
190 See generally RAYMOND T. NIMMER, THE LAW OF COMPUTER TECHNOLOGY Sec. 6.01 (West Group, rev. ed. 1999).
191 183 F.Supp.2d 328 (D. Mass. 2002).
192 Id. at 332.

78

applying UCC Art. 2. This happened in cases such as Berthold Types Ltd. v. Adobe Systems,

Inc.,193 Adobe Systems Inc. v. One Stop Micro, Inc.194 or Architectonics, Inc. v. Control

Systems, Inc.195 In Berthold, the court relied on the UCC 2-106 definition of “sale” requiring

the title to be transferred, which was not found in the license. In Adobe, the numerous

restrictions found in the agreement were treated by the court as the proof of parties' intent not

to sell software but merely to license it, even if they used such words as “purchase”, “sell” or

“buy”. In Architectonics, the predominant feature of the agreement was found by the court to

transfer intellectual property rights, thus not subject to UCC Art. 2. The rejection by the court

of UCC Art. 2 leaves it with the common law of contracts, which seem not to be the best

result for legal certainty, as it does not provide for a uniform and comprehensive set of gap-

filling rules and above all is not tailored for contracting in the electronic age.196 Had UCITA

been enacted in the majority of states, it would preempt common law contracts rules for

software licenses, but it is still not the case. The benefit of common law though is that

“-wrap” contracts should generally be upheld under the common law “mirror image rule”.197

As a result of this rule, the terms of the party who sends the last form (i.e. “the last shot”)

govern the contract. A license found by the buyer after opening the box or appearing on the

screen during installation is undoubtedly “the last shot”.

4.1.4 Implications for Open Source Licensing

Open Source licenses have many features of ordinary mass-market software licenses.

Namely, they are contracts of adhesion, with their terms fixed, giving the user no possibility

193 101 F. Supp.2d 697 (E.D. Ill 2000).
194 84 F. Supp.2d 1086 (N.D. Cal. 2000).
195 935 F. Supp. 425 (S.D. N.Y. 1996).
196 Lorin Brennan, Why Article 2 Cannot Apply to Software Transactions, 38 DUQUESNE LAW REVIEW 459, 542

(2000).
197 Id. at 543.

79

of negotiation. They resemble shrink-wrap and click-wrap licenses just discussed; however,

rarely assent to their terms is linked to opening the box or clicking on “I agree” button. The

common practice used by Open Source distributors is to attribute assent with some action of

the user, like using the program, copying, modifying or redistributing it. Therefore, it is

proposed to call such licenses “use-based”.198 It is very similar to the factual pattern which

allowed the court not to enforce the software license in Specht.

GNU GPL seems to treat making the use of the program as the assent. It states in

Sec. 5: “[B]y modifying or distributing the Program ... you indicate your acceptance of this

License to do so, and all its terms and conditions.” The “How to Apply These Terms to Your

New Programs” explanatory section of GNU GPL requires to attach notices of license within

the source code and, if the program is interactive, to make it output such notice when it starts

in an interactive mode. The Apache License, BSD License, MPL and SISSL in sections

covering notices all require to reproduce the license in the documentation, not in the source

code of the program only. All the licenses are silent on how to provide the notice of the

license if only the object code is distributed (except for GNU GPL's requirement to

interactively output it).

Unfortunately, following any of this advice would make the license neither “shrink-”

nor “click-wrap” and the only authority dealing with roughly the same factual pattern is

Microstar, which did not invalidate the license but limited itself to a kind remark that the

licensor could “do a better job” in making the user aware of the terms. Notices that the user

may not even spot if the program is not interactive do not provide any opportunity to review

the license. It means that the user could not be aware that the license treats his certain

198 Stephen T. Keohane, Mass Market Licensing, in: 652 PRACTISING LAW INSTITUTE, PATENT & TECHNOLOGY

LICENSING 2002 269, 278 (2002).

80

conducts as assent to the terms, which would put its validity into question under both UCC

and CISG. Under European Law there are also doubts whether the commercial

communication could be regarded as clearly identifiable if it is provided in such a way.199

At the first glance, it seems that there would be no valid communication between

parties; however, it does not have to be so in every case. One helpful fact is that although

there are many Open Source licenses, they come in the form of widely known model standard

form contracts. Contrary to proprietary software vendors, who draft separate licenses for

every piece of software, Open Source developers often decide to use one of model licenses,

such as GNU GPL. As a consequence, because these model licenses are known or at least

easily accessible to the general public, in a particular dispute the difficulty may not lie in

proving that the licensee knew the license, but just the fact that the program was subject to it.

Certainly, the knowledge about the license not expressly presented to the user

always remains subject to proof. Therefore, the only solution to secure greater probability of

validity and enforcement of Open Source licenses is to make their contracting procedure

similar to proprietary licensing and provide for clear communications between the parties,

such as clicking on “I agree” button as a necessary condition to download or use the

program.200

4.2 Copyright Law and Open Source Licensing

Whichever contract law regime is found to apply to a software transaction, what

199 The conformity with obligations to provide consumers with adequate prior information should be evaluated
for each Open Source project separately. Generally speaking, commercial Open Source developers comply
with them better than non-profit coordinators. Non-profit character, however, does not exclude suppliers
from the scope of consumer protection directives. In the German case discussed before, the court found that
GNU GPL formed the parties' contract despite the lack of “shrink-wrap” or “click-wrap” method, but neither
party was a consumer in that case.

200 Christian H. Nadan, Open Source Licensing: Virus or Virtue? 10 TEXAS INTELLECTUAL PROPERTY LAW JOURNAL

349, 367 (2002).

81

could have the greater importance is its relationship with copyright laws' provisions and the

effect it has on the license recognition. As it was already discussed, intellectual property laws

set a scope of private exclusive rights and balance them with the access right of the public.

Whether such balancing provisions are mandatory or simply set a presumption or default rule

is of enormous importance for concluding whether the parties are allowed to contract in other

way. As intellectual property laws are not always straightforward, there is a number of legal

doctrines which address this issue and they vary with regard to different national

jurisdictions.201 The U.S. sources of limits set by federal and state intellectual property laws

on the ability to change the licensing rules by contract, which seem especially relevant in the

discussion on the validity and enforceability of Open Source licenses, are: (1) preemption and

(2) copyright misuse.202 In Europe, the Continental copyright law institute of (3) moral rights

seems to be the most relevant for the purpose of this paper.

4.2.1 Preemption

In the U.S., copyright and contract law relationship is influenced by the federal

structure of the law. There is one federal Copyright Act, whereas each state has its own

contract law, consisting of common law and the particular implementation of UCC.203 To put

it in a nutshell, state laws have to conform to federal laws and if there is no such conformity,

federal laws preempt them. There are two bases of preemption relevant for the subject of this

paper: Copyright Act Sec. 301 and the Supremacy Clause. Federal Copyright Act preempts

all legal or equitable rights that are equivalent to any of the exclusive rights within

201 An example of relatively clear-cut provisions may be found in European Software Directive Art. 5, which
expressly states that the rights it grants to the lawful acquirer may be contracted away and at the same time
provides for certain rights which cannot be prevented by contract.

202 Mark A. Lemley, Beyond Preemption: The Law and Policy of Intellectual Property Licensing, 87 CALIFORNIA

LAW REVIEW 111, 113 (1999).
203 For a thorough analysis of incompatibilities between UCC Art. 2 and Copyright Act see Brennan, FN 196 at

481 et seq.

82

the general scope of copyright ... and come within the subject matter of copyright.204

It means that states cannot regulate the rights, which are already covered by the

federal Copyright Act. The Supremacy Clause of the U.S. Constitution states:

This Constitution, and the Laws of the United States which shall be made in

Pursuance thereof, ... shall be the supreme Law of the Land; and the Judges in every

State shall be bound thereby, any Thing in the Constitution or Laws of any State to

the Contrary notwithstanding.205

In other words, state law cannot interfere with federal policy and “stand as an

obstacle to the accomplishment and execution of the full purposes and objectives of

Congress.”206

Thus, the court presented with the question of the validity and enforceability of a

software license must perform a twofold analysis. Pursuant to Copyright Act Sec. 301 it must

ask whether the state rights sought to be enforced are equivalent to rights established by this

Act. Furthermore, it must inquire, whether such enforcement would not interfere with the

policy decisions underlying the Act. This is not always easy to distinguish and some

arguments may seem equally supportive in either stage.207 The point which undoubtedly falls

under Copyright Act Sec. 301 is that copyrights are rights against the world (rights in rem),

whereas contracts may generally create rights only between their parties (rights in personam)

but not exclusive rights that could be enforced against third persons. Such line of reasoning

allowed Judge Easterbrook not to preempt “shrink-wrap” license in ProCD. The practical

204 Copyright Act, 17 U.S.C. Sec. 301(a) (1976, as amended).
205 U.S. Const., Art. VI, Sec. 2.
206 Hines v. Davidowitz, 312 U.S. 52, 67 (1941).
207 For example, according to Karjala, the lack of actual bargain in adhesive “shrink-wrap” licenses leaves no

state interest in enforcing a claim resulting from such contract, which in reality is no different than a
copyright infringement claim; whereas for Founds this is a good argument only for preemption under
Supremacy Clause. Compare: Dennis S. Karjala, Federal Preemption of Shrinkwrap and On-Line Licenses,
22 UNIVERSITY OF DAYTON LAW REVIEW 511, 527-528 (1997) with Garry L. Founds, Shrinkwrap and
Clickwrap Agreements: 2B or not 2B?, 52 FEDERAL COMMUNICATIONS LAW JOURNAL 99, 109 (1999).

83

effect of software licensing; however, does not fall neatly under the theoretical in rem – in

personam distinction. To some extent, licenses indeed attempt to create rights against the

world, as they claim to bind any person using the software. Users cannot bargain for the terms

and the only way for them to access the program is to accept the license. Indeed, by accepting

it they become parties to the contract and subject themselves to in personam claims, but the

only other alternative is to become copyright infringers. Such reasoning is explicit in GNU

GPL Sec. 5, which states:

You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its

derivative works. These actions are prohibited by law if you do not accept this

License.

According to Karjala, preemption does not influence terms of warranties, rights of

return or “similar economic aspects of the transaction”, but attempts to extend the contractual

relationship to third parties would be preempted if as the result of such extension rights

similar to copyrights were created.208 Nimmer looks at the case law and concludes that the

success of Copyright Act Sec. 301 preemption claim depends much on whether the software

license was enforceable pursuant to general state law and that successful preemption claims

are limited to cases where there was no contractual or otherwise special relationship between

the parties.209 Although GNU GPL attempts to bind everyone performing actions described in

it, it includes a clause that may be regarded as the basis of such special relationship with these

third-persons. GNU GPL Sec. 6 states:

208 Karjala, FN 207 at 529.
209 Raymond T. Nimmer, Breaking Barriers: The Relations Between Contract and Intellectual Property Law,

13 BERKELEY TECHNOLOGY LAW JOURNAL 827, 862 (1998).

84

Each time you redistribute the Program ... the recipient automatically receives a

license from the original licensor ... subject to these terms and conditions.

This clause is a rather straightforward attempt of the copyright owner to conclude

contracts with all the subsequent recipients. Whether it indeed creates a contract valid under

state law is the matter of contract formation rules discussed above, which makes the

Copyright Act Sec. 301 preemption analysis dependent indirectly on giving the proper notice

about license terms.

It remains to be decided upon, whether the licensor's rights provided for in an Open

Source license are greater than those described in Copyright Act Sec. 106. The relevant rights

are: reproduction right, distribution right and the right to prepare derivative works. GNU GPL

grants all these rights and provides additionally in Sec. 2(b):

You must cause any work that you distribute or publish, that ... contains or is derived

from the Program ..., to be licensed as a whole at no charge to all third parties under

the terms of this License.

According to Gomulkiewicz, GNU GPL attempts to define “derivative works” wider

as it is provided in Copyright Act Sec. 101 and may purport to cover works derived from

such uncopyrightable elements as ideas or data.210 Even if such broad interpretation of the

license seems rather ungrounded, it is indeed true that there are not enough guidelines when

exactly the licensee's program would be subject to “copyleft virus”.211 On the other hand, the

programming techniques constantly develop and allow for designing various complicated

210 Gomulkiewicz, FN 116 at 90. Compare Copyright Act Sec. 101 “A derivative work is a work based upon
one or more preexisting works, such as a translation, ... abridgment, condensation, or any other form in
which a work may be recast, transformed, or adapted. A work consisting of editorial revisions, annotations,
elaborations, or other modifications, which, as a whole, represent an original work of authorship, is a
derivative work.” with GNU GPL Sec. 0 defining “work based on the Program” as “either the Program or
any derivative work under copyright law.”

211 For example, GNU GPL Sec. 2 in fine allows for distribution of independent and separate works that are not
derived from a program under a different license, but at the same time subjects them to “copyleft” if they are
distributed “as part of a whole which is a work based on the Program.”

85

relationships between programs. Thus, were the “copyleft” clause drafted more specifically it

could not serve its purpose too long. This vagueness is remedied to some extent by FSF,

which publishes GNU GPL FAQ, where it explains the applicability of “copyleft” to, for

example, the program's output, linked program, main program to which the free program is a

“plug-in” etc.212 Usefulness of these explanations depends on the circumstances of particular

case.

In order to be valid under Copyright Act Sec. 301 preemption analysis, GNU GPL

Sec. 2 should be interpreted to cover derivative works within the meaning of Copyright Act

Sec. 101 only, otherwise it would indeed broaden the licensor's rights beyond their scope

described in Copyright Act Sec. 106. The real problem; however, is to determine what

constitutes a derivative of a program. According to Larry Rosen merely using a program

licensed under GNU GPL or even combining it with the licensee's own program by linking

them dynamically or making them interact using application program interface (API) does

not involve the creation of derivative works; thus, the “copyleft” would apply only to

statically linked programs.213 On the other hand, GNU GPL FAQ, which considers many

more ways of making programs interact together, lists dynamic linking as covered by

“copyleft”. Untangling this dispute undoubtedly requires not only the sophisticated technical

expertize but also the knowledge of specific understanding of “derivative works” in particular

jurisdiction. Thus, it seems impossible to give a general answer, although in a given case “the

fear that the licensee would have to publish his own source code [might be] exaggerated.”214

GNU GPL is not the only license with “copyleft” clause and the developers using

212 Free Software Foundation, Frequently Asked Questions about the GNU GPL,
http://www.fsf.org/licenses/gpl-faq.html.

213 Larry Rosen, The Unreasonable Fear of Infection, 2, available at: http://rosenlaw.com/html/GPL.PDF.
214 Id. at 3.

86

Open Source programs covered by other licenses also have to pay close attention to its

relationship with their intellectual property. Apache License contains its own express

definition of “derivative works”, which partially relies on the language of Copyright Act Sec.

101, but it is not its verbatim copy.215 BSD License does not contain a “copyleft” clause, but

also does not expressly allow for the creation of derivative works; it merely grants the right to

redistribute modifications. Similarly, such “copyleft” licenses as MPL and SISSL do not

grant the right to prepare “derivative works” but only “modifications”.216 Generally, these

clauses are less vague than the “copyleft” of GNU GPL; thus, their scope should be easier to

determine in a particular case and, more importantly, the copyright preemption argument

against them is weaker.

After Copyright Act Sec. 301, there comes Supremacy Clause preemption analysis,

which involves policy considerations. As it was already presented, the policy underlying the

U.S. Copyright Act, set forth in the Intellectual Property Clause is the incentive theory. In

order to balance proprietary control with public access, the Congress limited broad exclusive

rights of copyright owners with such limitations as idea-expression dichotomy, first sale and

fair use doctrine. They are there to ensure the transfer of knowledge to the public while still

securing enough private interest of the authors. The question then is whether Open Source

licenses retain this carefully designed balance. What can be noticed at the first glance is that

215 Apache License Sec. 1 “Derivative Works” shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or
other modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to
the interfaces of, the Work and Derivative Works thereof.

216 MPL Sec. 1.9. “Modifications” means any addition to or deletion from the substance or structure of either
the Original Code or any previous Modifications. When Covered Code is released as a series of files, a
Modification is:
A. Any addition to or deletion from the contents of a file containing Original Code or previous
Modifications.
B. Any new file that contains any part of the Original Code or previous Modifications.”
SISSL contains a very similar definition of “modifications”.

87

all the provisions of proprietary software licenses that are usually mentioned as susceptible of

Supremacy Clause preemption are not present in Open Source licenses. Namely, instead of

retaining control over the program, they encourage its reproduction and redistribution.

Moreover, they do not prevent users from decompilation217 but allow for exploring the

software and for modifications to a far greater extent that the default Copyright Act

provisions on fair use. Whereas proprietary licenses tend to tilt intellectual property balance

towards the private owners, the “problem” with Open Source licensing may be that it reaches

for the other extreme.

Indeed, the critics of Open Source ideology often repeat that it provides no

incentives to write software, as the authors retain no control over its substance, nor can they

secure profits from distribution. The straightforward answer to this may be that no-one forces

the hackers to share their software with the world. Thus, the mere fact of the existence of

Open Source phenomenon proves that there exist enough incentives to supply software in this

production scheme. The nature of these incentives seems to be more complex than the simple

and prosaic monetary award of proprietary model and there is an ongoing debate what

actually they are.218 One often repeated hypothesis is that the Open Source Community is

based on “gift culture”, which appears in societies having surpluses of goods and rewards

those who share with others. Briefly speaking, hackers seem to find incentives in their

recognition as the most productive contributors, not in direct monetary award. Because there

is no textual basis in the Intellectual Property Clause to support the argument that the

incentive theory regards monetary incentives as the only possible way “to promote the

Progress”, Open Source licensing model does not seem to stand against the underlying policy

217 The availability of source codes limits the need of decompilation significantly.
218 For a thorough analysis see various papers by Eric S. Raymond.

88

of Copyright Act as defined by the U.S. Constitution.

The argument may be raised that the decision to license software as Open Source can

be the result of some external influence on the developer which forces him to forgo his

private interests otherwise secured by Copyright Act, especially in the light of so called “viral

effect” of the GNU GPL “copyleft” clause. As it was already presented, “copyleft” requires

the licensee to distribute all his derivative works of the program under the same license. This

means that they have to be made freely available to anyone for reproduction and further

modification together with their source codes. Again, a lot depends on the scope of Open

Source licensing and especially its understanding of “derivative works”, “works based on the

program” or any other term used by the Open Source licenses to set the scope of copyleft.

It can be concluded that the enforceability of “copyleft virus” might be preempted

pursuant to Supremacy Clause, only to the extent that it would attempt to open the source of

software, which is unrelated or developed independently from the original program. This

conclusion is similar to the one reached in Copyright Act Sec. 301 preemption analysis

presented above. However, the effect here seems to depend not on the scope of rights that an

Open Source license is trying to enforce, but much more on the fact that the software

becomes subject to “copyleft virus” only by its author's deliberate decision to both modify

and redistribute the original program and that the licenses do not attempt to make him dispose

of his legally acquired copyrights. Indeed, Open Source licensing is different than releasing

software into public domain. GNU GPL expressly states in its preamble “(1) [we] copyright

the software, and (2) offer you this license”; thus, all rights granted by the Copyright Act

remain with the author, who licenses them as the developers of proprietary software do. As

the result, not only the protection of Copyright Act is not denied by Open Source licensing,

89

but also it provides for a mechanism of allowing the public access to the software

subsequently developed after the initial release of Open Source program. Rosen explains the

“copyleft” bargain in the following way: “You can create derivative works of GPL-licensed

programs only if you agree to return the favor.”219 Thus, the effect of “copyleft” is exactly

what the intellectual property laws' underlying policy aims at – to secure supply of

knowledge and innovation for the society. If Open Source proves, as it in fact does, to

provide enough incentives for the authors to create such supply, one may risk a conclusion

that it Solomonically resolves the old conflict between private and public interests in the

knowledge market, which is what the Intellectual Property Clause was drafted for.

4.2.2 Copyright Misuse

Similarly to preemption, copyright misuse doctrine may result in not enforcing a

software license.220 This doctrine, deriving from an older patent misuse doctrine, prohibits

enforcing a copyright broadened beyond its statutory limits by such conduct of its holder as

certain licensing practices.221 It is not necessary for the court to find antitrust liability in order

not to enforce a misused copyright and it is also not necessary for a person raising misuse

defense to be actually harmed or affected by it.222 However, the most important limit of

copyright misuse is that it can only be used as a defense against copyright infringement

claims, thus it may not help against breach of contract claim in the same case.223 The doctrine

was applied in Lasercomb America, Inc. v. Reynolds,224 where the court did not allow to

enforce a standard form software license containing a clause prohibiting the development of

219 Rosen, FN 213 at 3.
220 Lemley, FN 202 at 144-152.
221 2 PAUL GOLDSTEIN, COPYRIGHT, 9:35-40 (Aspen Law & Business, New York, 2nd ed. 1998).
222 Nadan, FN 200 at 368.
223 Lemley, FN 202 at 157.
224 911 F.2d 970 (4th Cir. 1990).

90

any competing software for a 99-year period.225 It is clear that the holding in Lasercomb

should not worry Open Source licensors, as they expressly permit the use of their software in

any manner, even in order to create a competing product.

However, the underlying idea of misuse doctrine should be analyzed. In the cases

preceding Lasercomb, the courts examined patent grantback clauses, which usually require to

license back to the licensor any improvements or derivatives that were created by the licensee

on the basis of the licensed original. Patent misuse was found in requiring the licensee to

grant back preexisting or unrelated patents. Nadan, who discusses the misuse defense in more

detail, presents this as yet one more threat to the enforceability of GNU GPL “copyleft”

clause, which “purports to affect independent, separate works.”226 Whether this is really what

“copyleft” clause aims at is not so apparent, especially in the light of the analysis contained in

previous section, but it is necessary to stress again that its exact scope is crucial for the

success of Open Souce licensing. Having in mind the fact that “copyleft” is practically the

only restriction for licensees and that it is placed in the most popular Open Source licenses,

whether it stands against threats such as misuse defense may prove important for the whole

future development of this software production model.

In any case either the scope of “copyleft” clause or the meaning of a derivative work

of a computer program needs clarification. It is not easy to determine what should it be in the

complex reality of software business, where programs interact in a variety of ways and new

programming techniques are constantly being developed. At the roots of “copyleft” licensing

rests the idea similar to the one in patent grantback clauses. The creation of improvements by

the licensee is possible only because of the access to the original licensed intellectual

225 Id. at 978.
226 Nadan, FN 200 at 369.

91

property; thus, to require him to contribute them back to certain extent seems a fair trade.

What is extremely important with “copyleft”, is that it demands for the contribution to the

general public, but at the same time it grants access to the original to everybody and for free.

It must be also stressed again that the obligation to contribute is triggered only by the

licensee's independent decision both to modify and redistribute the software. Because of the

cooperativeness of Open Source development, the compliance of the parties with the license

affects the whole society benefiting from new software supply or at least the whole Open

Source Community. All of these special conditions should be taken in mind when deciding

whether the misuse defense should allow not to enforce “copyleft”. According to Potter,

“[copyleft] is minuscule when compared to the restrictions found in proprietary licenses”227,

such as those prohibiting backup copies or reverse engineering and allowing to run the

program on one computer only. Also in the mind of the author of this paper, Open Source

licenses definitely call for more tolerance than the one given by the courts towards grantback

clauses.

Patent and copyright misuse cases usually involve competition law issues. In

Europe, where there is no Community-wide intellectual property misuse doctrine, the relevant

law could be the Commission Regulation on the application of Article 81(3) of the Treaty to

categories of technology transfer agreements (Technology Transfer Regulation).228 It defines

technology transfer agreements to encompass software licenses and generally declares Article

81(1) of the Treaty not applicable to them. However, apart from prohibiting some hardcore

restrictions in Art. 4, the Art. 5 of the regulation contains express prohibition of exclusive

grantback clauses. A contrario, obligations of the licensee to grant a non-exclusive license to

227 Shawn W. Potter, Opening Up to Open Source, 6 RICHMOND JOURNAL OF LAW AND TECHNOLOGY 24, 74 (2000).
228 2004/772/EC, OJ L 123, 27/04/2004, P. 11.

92

the licensor or to a third party in respect of its own improvements should be treated as

covered by the exemption. Moreover, since “copyleft” clauses increase the ratio of

technology transfer because the obligation to share one's improvements is automatically

triggered upon distribution and thus they give all competitors access to the same technology,

the argument of their anti-competitive effect seems very weak.

4.2.3 Moral Rights

Moral rights protect the relationship between the author and his work and for

example grant him the right to have his authorship recognized or they protect the integrity of

the work by allowing the author to object to its derogatory treatment. Open Source Software

development strongly relies on the reputation gain of the hackers and possibility of a

wrongful attribution of subsequent program versions is even expressly addressed by some of

the Open Source licenses requiring to properly preserve copyright notices and indicate which

parts of the program were changed by whom. For that, additional protection may be sought in

moral rights, which are particularly strong in countries following the Continental approach

towards intellectual property law. The worldwide statutory basis for this type of Open Source

Software protection may be found in Art. 6bis of the Berne Convention, which applies to

computer programs pursuant to such instruments as WIPO Copyright Treaty or European

Software Directive.

Metzger and Jaeger note that the very broad grant of rights in GNU GPL does not

completely exclude the author's right to protect the integrity of the work covered in Sec. 14 of

the German Copyright Act.229 They conclude that it is not possible to grant the right to modify

229 Axel Metzger, Till Jaeger, Open Source Software and German Copyright Law, 32 INTERNATIONAL REVIEW OF

INDUSTRIAL PROPERTY 52, 65 (2001).

93

the work “to the extent of distortion.”230 It means that the initial author is empowered with

some residual control over the Open Source Software and provides an example how statutory

law can strengthen moral norms which already recognize “project coordinators” as the only

persons allowed to decide on the project's development or perceive “forking” as the last resort

if the coordinator undertakes objectively bad decisions.

Therefore, contrary to preemption and copyright misuse doctrines analyzed above,

moral rights should not be perceived as a way of invalidating an Open Source license but as

an additional and subsidiary institute securing the proper development of software. They do

not allow to interpret the broad grant of rights in the licenses as a complete control waiver

and prevent licensees from taking away the community's most valuable assets – their source

codes and their reputations.

4.3 Possible Consequences of License Invalidity

Should a software license not stand the court's scrutiny under either of the legal

theories presented above, there is a need to determine the valid basis for the end-user's rights

to use the software that he legally purchased or otherwise acquired in good faith. Indeed,

intellectual property laws contain rules which are helpful in this second stage of analysis.

There are three bases of users' rights which are relevant in the discussion of Open Source

Software licenses: (1) first sale; (2) fair use; and (3) implied licenses, but they do not need to

be extensively addressed, because the invalidity of a whole license is rather a theoretical

possibility only and on the example of the U.S. law it will be shown that neither party of

Open Source Software transaction would likely opt for such solution. However, it is possible

that the invalidity of only particular clauses of licenses is invoked, the most crucial of which

230 Id. at 66.

94

are warranty disclaimers and liability limitations. In such a case it is necessary to determine

(4) which liability regime would govern the users' rights in case the software proves

defective.

4.3.1 First Sale

In the U.S., pursuant to Copyright Act Sec. 109

the owner of a particular copy ... lawfully made under [Copyright Act], ... is entitled,

without the authority of the copyright owner, to sell or otherwise dispose of the

possession of that copy.231

This provision sets an exclusive right exhaustion rule known as “first sale”. Some of

the American courts, usually after finding that UCC Art. 2 applies to the software

transactions at issue and treating the license as a sale, logically turned towards the first sale

doctrine. This is not an automatic result and in cases such as ProCD or MA Mortenson the

courts ended up with enforcing the license despite finding UCC Art. 2 applicable.

In at least two cases; however, the first sale doctrine allowed the courts not to

enforce the license accompanying the transaction. In Novell, Inc. v. Network Trade Center,

Inc.,232 the “shrink-wrap” license was held void, to the extent it attempted to retain title in the

seller. Similarly, in Softman Products Co., LLC v. Adobe Systems, Inc.,233 the fact that the

software contained a “click-wrap” End-User License Agreement (EULA) was not enough to

construct the transaction as license. Softman was unbundling and redistributing the programs

legally acquired on the market as “software collections”, but never installed them, thus was

not made aware of the license clause prohibiting such unbundling. The license failed contract

formation analysis for lack of appropriate notice and no expression of assent. The court

231 Copyright Act, 17 U.S.C. Sec. 109 (a) (1976, as amended).
232 25 F. Supp. 2d 1218 (D. Utah 1997).
233 171 F. Supp. 2d 1075 (C.D. Cal. 2001).

95

backed it up with the first sale doctrine and held that “a single payment for a perpetual

transfer of possession is, in reality, a sale of personal property and therefore transfers

ownership of that property, the copy of the software”.234

The results of Novell or Softman seem not to be the most dangerous threat for Open

Source licensing. First of all they are not fully theoretically correct in distinguishing between

the copy of a program and the copyrighted program itself, to which the first sale limitation

does not apply. In other words, although the legal purchaser of a “shrink-wrapped” program

can legally dispose of such copy, that does not give him any intellectual property rights in

this program. Furthermore, Open Source licenses do not prohibit, but expressly allow

redistribution, so there is not much difference in practice whether redistribution right would

flow from the license or first sale. As the first sale allows the purchaser only to sell or

otherwise lawfully dispose of the copy, there is no danger that it could be used to undertake

an action that Open Source licenses prohibit.

4.3.2 Fair Use

The German decision serves as an example that what really may threaten Open

Source licensing is not just redistribution but additionally the closing of the code of Open

Source programs. Open Source license infringers would like to upgrade the software by some

modifications, not to share the new code with the general public and seek for rents flowing

from the resulting monopoly. This cannot be done with the use of the first sale doctrine, as it

allows to redistribute the copy as it is only. Moreover, this is what Open Source licenses and

especially GNU GPL expressly prohibit. Once the licensee decides to distribute modified

software legally, the source code must be made available also.

234 Id. at 1086.

96

The question then is, whether the provisions of fair use would allow to circumvent

the licenses and to close the program's code. Again, the logic of GNU GPL Sec. 5 seems to

prevail even if the license itself would be held invalid. Copying, creating derivative works

and other actions that would have to be undertaken in order to free-ride on Open Source

Movement are expressly prohibited by law. The fair use provision in Copyright Act Sec. 107

is too limited to allow this, especially if the free-rider made commercial use affecting the

potential market for the program. As the court held in Sony Corp. of Am. v. Universal City

Studios, Inc.,235 “every commercial use of copyrighted material is presumptively an unfair

exploitation of the monopoly privilege that belongs to the owner of the copyright.” Thus,

either the free-rider limits himself to small portions of code and non-commercial use or he

decides not to question the validity of the Open Source license that extends rights allowed by

fair use provisions and becomes the part of the community.

4.3.3 Implied Licenses

In the case of both Open Source and proprietary programs distributed via Internet,

they are often freely and publicly available with no express or easily visible terms attached.

As the use of the program without authorization usually constitutes copyright infringement,

persons acquiring it over Internet could easily be induced to infringe if there was no legal

protection of their good faith actions. Fair use may allow them legally use programs

distributed in such way but as Kosturakis points out, if there are no reservations

accompanying the transaction, the user's rights should be construed according to an implied

license, the scope of which can be determined by particular circumstances or the industry's

custom.236

235 464 U.S. 417, 451 (1984).
236 Irene Kosturakis, Software Licensing and UCITA, in: 762 PRACTISING LAW INSTITUTE, UNDERSTANDING THE

97

Before considering the existence of implied contract, one should note that simple

putting a program on the Internet for free downloading and using might constitute a waiver of

copyright, thus making it “public domain software”. Such software can be used and modified

without risking copyright infringement. However, the author of the upgraded program, which

is the result of such modification, would often be protected by copyright. Consequently, he

would be able to control the distribution and use of the upgrade. If the courts, after finding no

valid Open Source license conclude that the developer actually waived his copyright, they

would allow persons who obtained the source code of original program to upgrade it and use

copyrights in the upgrade to close the code. Even if the original remained freely accessible,

obviously it is the upgrade which would gain the market, where customers at all times

demand more advanced programs. Fortunately, Open Source developers may rely on the

holding in Storm Impact, Inc. v. Software of the Month Club,237 which considered the

distribution of the program by placing it for a free download on the Internet. According to the

court, such circumstances do not constitute a copyright waiver or give rise to the conclusion

that the author allowed for unlimited distribution.238 Also, the dicta in Planetary Motion239

must be recalled, where releasing the program under GNU GPL was enough for the court not

to find a waiver. Indeed, the preamble of GNU GPL expressly states: “we copyright the

program”. Thus, it seems that only a complete layman would equate Open Source with

“public domain software”; Open Source Movement does not need to fear that the closing of

the code could legally occur in this way.

There remains the possibility that the copyrights to an Open Source program are not

INTELLECTUAL PROPERTY LICENSE 2003 437, 448-449 (2004).
237 13 F.Supp. 2d 782 (N.D. Ill. 1998).
238 Id. at 791.
239 FN 159.

98

regarded as waived but the license after the scrutiny of contract formation rules is rendered

invalid. Then, the user might want to rely on an implied license, allowing him to use the

program for the purpose determined by the circumstances of the transaction. According to

Nadan, it is clear that Open Source Software is “provided for the express purpose of being

modified, used and distributed;” thus, should the court not find an express license it would

probably allow to use, modify and redistribute the program but it would rather not find such

unusual clause as “copyleft” to be impliedly agreed upon.240 It means that the

proprietarization of the program might be legally possible. On the other hand, it is very risky

for a user to rely on the existence of only implied license for redistributing and modifying. If

the court subsequently finds out that there was no such contract in given particular

circumstances it would subject the user to copyright infringement claims or maybe even

criminal proceedings. Simply admitting the knowledge and assent to an Open Source license

gives modification and redistribution rights expressly to the user and without any risk.

Moglen points out that there is no need of a license for a lawful acquirer of a

program to use it or even experimentally modify it – these rights are already provided for in

copyright statutes either impliedly within fair use or expressly in the provisions covering

copying in the course of normal use of the program or allowing for limited decompilation.241

Gomulkiewicz requires however, that the right to use the program is expressly provided in the

license and bases this argument on the premise that the use of a work outside the scope of a

license is a breach of contract and a violation of Copyright Act.242 There is no express

permission of use in GNU GPL and Apache License,243 but BSD License, MPL and SISSL
240 Nadan, FN 200 at 365-366.
241 Moglen, FN 121.
242 Gomulkiewicz, FN 116 at 84-85.
243 The right of use is granted only in the Sec. 3, covering patent license. At the same time Apache Foundation

admits that they do not hold any patents.

99

grant such. Indeed, the users may expect all their rights to be covered by the license, but it is

common knowledge that default statutory provisions govern every contract even if not

expressly invoked; moreover, the right to use is not one of the exclusive rights of the

copyright holder. Thus, Gomulkiewicz's arguments should not be treated as a serious threat to

Open Source licensing and clearly Moglen is much more convincing here.

Gomulkiewicz makes a point; however, about BSD License, which does not contain

an express clause allowing for modifying the program.244 Therefore, the right to create

modifications has to be interpreted from the grant of the right to redistribute modifications

expressly included in this license. As it would be pointless to allow the user to redistribute

modifications without allowing him to create them in the first place, the grant of the latter

right is logically covered by BSD License.

4.3.4 Liability for Open Source Software

There are different statutory liability regimes that could apply to software

transactions should the limitation and disclaimer contained in the license turn out invalid.

They can be found in any national contract law a court would find applicable in a given

situation and they are also contained in CISG. For example, if the parties fail to communicate

properly the terms of license or the assent to them and the court finds some other basis for a

valid contract, it could refer to CISG Art. 35, the relevant part of which provides that unless

expressly agreed to the contrary, goods should be fit for the purposes for which goods of the

same description would ordinarily be used or, in the case of buyer's reliance on the seller's

skill and judgment, they should be fit for any particular purpose made known to the seller.

Similarly, UCC 2-314 contains inter alia the requirement of the fitness for ordinary purposes

244 Gomulkiewicz, FN 116 at 94.

100

and UCC 2-315 for any particular purpose.

These obligations are exactly what the Open Source licenses intend to exclude. In

fact, all of the licenses discussed in this paper contain language which by the virtue of UCC

2-316 is sufficient to exclude all implied warranties (i.e. “as is” expressions). But it has to be

stressed again that these disclaimers are effective only if the license terms become part of the

parties' contract. The language seems at first glance to comply also with the requirements for

disclaimers set in UCITA (Sec. 401 et. seq.) but again, everything depends on whether the

license as a whole was validly concluded between parties.

Limitations and disclaimers are also under threat of consumer protection laws, which

are particularly strong within the European Union. Many of these regulations concern liability

for defective goods, as is the case with the Directive on certain aspects of the sale of

consumer goods and associated guarantees245 or the Directive on the approximation of the

laws, regulations and administrative provisions of the Member States concerning liability for

defective products.246 The former defines consumer goods as “any tangible movable items”,

the latter refers to “all movables”. It seems that their applicability to software cannot be

definitely excluded but one strong argument against it flows from the need to preserve

consistence of the whole body of European Union Law. Such consistence would be impaired

if software was regarded as goods for the purposes of abovementioned directives and at the

same time as falling under the definition of “information society services” and its suppliers

required to comply with the E-commerce Directive.

Regardless of the status of software as goods or services, mass-market software

licenses should be searched for any unfair contract terms. The European Directive on unfair

245 1999/44/EC, OJ L 171, 07/7/1999 P. 12.
246 85/374/EEC, OJ L 210, 07/08/1985 P. 29.

101

terms in consumer contracts (Unfair Terms Directive),247 regards any contractual term which

has not been individually negotiated as unfair if, contrary to the requirement of good faith, it

causes a significant imbalance in the parties' rights and obligations arising under the contract,

to the detriment of the consumer (Art. 3.1). The fact that the directive demands the

interpretation most favorable to the consumer in case of doubt immediately brings to mind

MPL and SISSL, which contain express clauses excluding the applicability of laws requiring

construction against the drafter. These licenses also contain choice of law provisions,

pointing at Californian Law, but Member States are expressly prohibited (Art. 6.2) to deprive

the consumer of the protection by enforcing the choice of the law of a non-Member country

as the law applicable to the contract if there is a close connection with the territory of the

Member States. Similar mechanism exists in Art. 5 of the Convention on the Law Applicable

to Contractual Obligations (Rome Convention). This provision has to be taken under

consideration also in the case of these Open Source licenses that lack choice of law clauses,

as it points to the law of the consumer's country in such situation (Rome Convention Art.

5.3). It can be concluded that the applicability of consumer protection laws of both the

Community and its Member States cannot be excluded with regard to Open Source Software

users.

It must be stressed again that liability limitations and warranty disclaimers are not

Open Source-specific clauses. Proprietary software vendors use them too because their

software also contains many untraceable bugs. Thus, all of them are interested in their

enforceability. It is; however, by far more important for Open Source developers that these

clauses prove valid because it would be hard to find any hacker willing to contribute to a

247 93/13/EEC, OJ L 095, 21/04/1993 P. 29.

102

project for free, knowing that he could be subject to liability.

A quick search of major Open Source licenses for the terms defined in the Annex to

the Unfair Terms Directive leads to the conclusion that the drafters of the licenses should

probably consider making them in line with at least items b) and i) thereto. Item b) prohibits

inappropriate exclusion or limitation of the legal rights of the consumer in the event of total

or partial non-performance or inadequate performance; thus, logically it is the relevant

provision for the evaluation of liability limitations and warranty exclusions. A good argument

here is that the provision of the software “as is”, when distributed free of charge together with

source codes, is clearly appropriate and fair. Item i) of the Annex does not allow to

irrevocably bind the consumer to terms he had no real opportunity of becoming acquainted

with before the conclusion of the contract. Thus, it is necessary to indicate once more that

express and clear communication of Open Source license terms must be provided for.

One of the ideas developed in this paper is that Open Source Movement does not

treat the users as mere consumers but by giving the broad rights and access to source codes

equates them with developers. Theoretically, such arrangement provides no reason why users

should feel dependent or inferior when entering into legal relations with suppliers. These facts

support the argument that consumer protection laws aiming at securing the interests of the

weaker party should not be applicable to Open Source transactions. However, many software

end-users are acting outside their trade, business or profession, that makes them consumers,

as defined by European and other consumer protection laws. Apart from this legal argument,

the fact that users continue to depend on particular software providers (companies such as

Red Hat and SuSE or non-profit distributors such as Debian), despite the possibility of

maintaining software on their own or commissioning this to anybody, calls for retaining the

103

higher level of their protection.

4.4 Implications of “Copyleft” Infringement

Assuming the validity of an Open Source license it must be considered whether

various “copyleft” clauses could serve their purpose well and prevent the program from being

proprietarized. Unless otherwise construed, “copyleft” clauses in their parts referring to the

distribution of the program's modifications constitute the use of the exclusive author's right to

authorize the creation of derivative works, which are subject to copyrights independent from

the protection of the original. The protection of derivative works; however, “does not extend

to any part of the work in which the [original material] has been used unlawfully,” to take the

U.S. Copyright Act Sec. 103 (a) as an example.

The author of the derivative work is entitled to distribute it, subject to the original

author's consent. However, this rule applies only to lawfully created derivative works and if

such work was created without authorization or outside the scope of fair use limitation,

copyright law does not protect it. In the U.S. it is agreed that neither the infringer nor the

original author can be considered to hold copyrights in unauthorized derivative works, but the

jurisprudence fails to produce a positive answer on their legal status.248 Lemley, for example,

argues that they belong to public domain.249 If this is the case, then it could constitute a

loophole for making an Open Source program proprietary. There seems to be no threat if the

248 Sean Hogle, Unauthorized Derivative Source Code, 18 COMPUTER AND INTERNET LAWYER 1, 5 (2001). In other
jurisdictions the assignment of rights to program derivatives can be different. For example, according to
Polish jurisprudence, the rights to modifications of computer program belong to the author of the original as
a matter of law, except for the right to claim authorship. Compare: M. Byrska, Prawne aspekty
modyfikowania programu komputerowego [Legal aspects of modifying computer program], 4 KWARTALNIK

PRAWA PRYWATNEGO [PRIVATE LAW QUARTERLY] 693 (1996) (applying this rule to any modifications and
allowing their author to claim the moral right of authorship only) with: A. NOWICKA, PRAWNOAUTORSKA I
PATENTOWA OCHRONA PROGRAMÓW KOMPUTEROWYCH [COPYRIGHT AND PATENT PROTECTION OF COMPUTER PROGRAMS], 134
(Dom Wydawniczy ABC, Warszawa, 1995) (applying this rule only to modifications made without the
original author's consent).

249 Mark A. Lemley, The Economics of Improvement in Intellectual Property Law, 75 TEXAS LAW REVIEW 989,
1022 (1997).

104

unauthorized derivative work contains some elements of the original program because its

distribution would still require the original author's consent. However, it is possible to

imagine a program deriving from a piece of Open Source Software but not containing any

elements of the original, especially considering the existence of non-literal elements, such as

the structure, sequence and organization. To the extent these elements are not protected, there

is no question of infringement, copyright in new program vests in its author and he can keep

it proprietary. If it was indeed derived from the copyrighted elements and as an unauthorized

derivative work belonged to public domain, its use and distribution would not be

encumbered. According to Nadan, even in such a case proprietarization is possible, because

any person by adding even slight modifications could create the new version of a program,

claim copyrights in it and decide not to reveal the upgraded source code.250

Therefore, the conclusion is similar to the one reached for the purpose of preemption

analysis. The scope of “copyleft” clauses must be clearly determined. Only in such way there

would be certainty as to when the authorization for the creation of derivative works exists and

the threat of closing the Open Source program would be minimized.

4.5 Impact of Software Patents on Open Source Movement

Generally speaking, software patents are considered a serious threat for Open Source

development. GNU GPL treats obtaining patent protection as yet another way of making the

program proprietary and purports to make any patent “licensed for everyone's free use or not

licensed at all.” Stallman is aware of all the strengths of patents over copyrights but looks at it

“from the point of view of its victims.”251 His arguments in The Danger of Software Patents,

briefly summarized, are that because patents protect ideas, prohibit independent creations and

250 Nadan, FN 200 at 371.
251 Richard M. Stallman, The Danger of Software Patents, in: STALLMAN, FN 92 at 95.

105

require to revise the big number of already granted patents in order to avoid infringement,

they make it impossible for small developers to write software. In a recent article,252 Stallman

compares patents to a minefield. Because software projects often combine thousands of ideas

there is no practical possibility of making an effective search for parts that are already

covered by patents; thus, “each design decision carries a risk of stepping on a patent, which

can destroy [the] project.”253 According to Stallman, developers end up either with removing

some software features, are forced to obtain a patent license or risk a costly procedure of

overturning the blocking patent in court.

Another Open Source advocate, Bruce Perens calls upon the “incentive theory” and

finds no hard evidence that software patents promote progress and in any case considers Free

Software as a better means for transferring ideas to the public.254 According to him, only the

biggest market players, holding portfolios of many patents, make use of the patent system but

even they use patents only defensively, to cross-license them and avoid being sued for

infringement by their competitors. Thus, those developers who do not have any patents, like

the Open Source Community are, in the words of Perens, “innocent bystanders injured by a

war of giants”; they cannot cross-license, nor can they afford challenging a patent.

It clearly flows from the analysis of Open Source philosophy, that the development

of this software does not require patent protection. Open Source developers do not intend to

acquire stronger means to prevent others from using or distributing their software than those

they have already had under copyright laws. As it was presented above, the legal system is

used by Open Source Movement to defend the openness (free availability) of source codes

252 Richard M. Stallman, How to fight software patents - singly and together, available at:
http://www.newsforge.com/article.pl?sid=04/09/09/1612239.

253 Id.
254 Bruce Perens, Software Patents v. Free Software, available at: http://perens.com/Articles/Patents.html.

106

and so far the innovative licensing practices were enough to maintain it and secure the free

flow of software. Relatively weak protection of copyrights allows also to design around a

proprietary program, which undoubtedly is harder if it was patented. Thus, Open Source

developers can possibly play only the role of patent infringers exposed to the threat of multi-

million suits or forced to pay for the license. Obviously, this would strongly detract many

volunteers and freelancers from contributing their code to the public.

There are; however, arguments that Open Source Software developers are actually

less threatened by software patents than those who work under proprietary model because of

practical impossibility of stopping the alleged infringement of the former. According to

Ravicher, this is due to the fact that source codes are publicly available so instigating a

lawsuit, which has to be individualized, is pointless.255 Moreover, the “Catch-22”, as he

describes it, is that there is no gain in suing small individual developers, whereas attacking

big and wealthy Open Source players will make them use their legal weapons against the

attacker. One could add to this, that it may be easier for Open Source developers to conduct

searches on already patented software before deciding what to include in their products.

Because Open Source Movement has no problems in gathering volunteers, it may easily set

up big teams of people searching for “patent mines”, as Stallman calls them.

Open Source development model may or may not be better prepared to fight

software patents. However, the true division lines between patent protection supporters and

255 Daniel B. Ravicher, Patents – Why Free / Open Source Software Might Have Less to Fear than Non-Free
Software, available at: http://www.groklaw.net/pdf/Patents.pdf; At the same time Ravicher himself is one of
the people standing behind “patent insurance” offered by Open Source Risk Management (OSRM) and
concludes that Linux has a patent risk. (Open Source Risk Management, Results of First-Ever Linux Patent
Review Announced, available at: http://www.osriskmanagement.com/press_release_080204.pdf) OSRM has
found as many as 283 patents that, if upheld as valid by the courts, could potentially be used to support
patent claims against Linux. They believe; however, that no patents that have already been tested in court
are infringed in the kernel.

107

those opposing it run between small and big developers, not necessarily between Open

Source and proprietary software. Consequently, the main issue in the discussion concerns the

proper means to protect the software market in general. One additional strong argument

against patent protection has been raised by numerous practitioners, who believe that patent

offices throughout the world lack necessary resources to diligently examine all applications.

This results in granting patents for items that clearly do not fulfill requirements of novelty,

non-obviousness or do not involve any inventive step.256 But this does not result in any Open

Source-specific problems, apart from subjecting it to all the drawbacks of patent offices

system.

The analysis of Open Source Movement; however, provides a good point in the

general discussion whether to promote software patents, such as the one taking place

currently within the European Union. Perhaps, instead of discussing whether programs should

be patentable “as such” or not, the drafters should ponder whether to allow for patenting

information technologies at all. This is because of tremendous development of Open Source

Software without the help of patents and with a remarkable technology transfer to the public

at the same time. Therefore, tightening the protection and allowing private individuals for

more control seems simply unnecessary.

4.6 Evaluation of Legal Controversies of Open Source Licensing

The most important conclusion of the current Chapter is that the legal situation of

Open Source Software is by no means as clear and definite as the drafters of the licenses

intend it to be. This is neither good nor bad, because the same applies to proprietary

licensing; the law generally does not distinguish between the ideology or business model of

256 The Foundation for a Free Information Infrastructure often informs the public about many trivial software-
and Internet-related patents that are being granted throughout the world. (See http://swpat.ffii.org).

108

software developers. However, given the fact estimated in previous Chapter that the system

designed to protect Open Source Software secures not only the private interests of developers

but also the interests of the users and the society as a whole, any threat to its legal validity

and enforceability should be given greater weight.

Fortunately, the practice proves the hypothesis of Moglen that licensees have more

incentives to comply with Open Source licenses than to claim they are not binding;257 thus,

one should not expect too many occasions when their validity and enforceability is

questioned. This is especially so because the alternatives such as first sale, fair use or implied

licenses do not give users as wide a scope of rights as Open Source licenses themselves. The

probability is even smaller due to the fact that the first court case directly ordering

compliance with GNU GPL was recently rendered in Germany. This decision should be

evaluated as a big step towards the increase of Open Source legal certainty, although it

remains remarkable that most of such disputes are resolved by negotiations.

Still, the analysis presented above proves that there are possibilities for putting Open

Source Movement under the legal threat. The major such possibility is the invalidation of the

whole license on the basis of lack of clear communications between the contracting parties.

This again is not a specific problem of Open Source licensing; however, there is no

preferential treatment for it under law. Therefore, the developers should take care to expressly

communicate terms of licenses to make them binding under every legal regime discussed in

this Chapter.

Apart from various contract formation rules, the institutes relating to copyright law

were also analyzed above. The conclusion from that part is that the licenses should not be

257 See FN 156 and accompanying text.

109

preempted or considered to constitute a copyright misuse if clauses such as “copyleft” are

reasonably construed. Moreover, the recognition of author's moral rights could very well

supplement the goals aimed at by Open Source licensing. Most importantly, the legal analysis

is backed up with policy considerations, because the system for the protection of Open

Source Software is in line with the underlying idea of intellectual property laws – to balance

private and public interests and may even be considered to align these interests.

Therefore, there seem to be no serious threats to any of the discussed Open Source

licenses as a whole; however, there may be legal ways to avoid their particular clauses. One

of the very important examples discussed in current Chapter is “copyleft”. Although parties

might agree that it covers derivative works only this does not answer the question what

exactly its legal effect is. It seems that courts may have many problems in determining legal

relationships between programs, the development techniques of which evolve constantly,

whereas the law and vague licenses do not give necessary guidelines. Apart from technical

difficulties, the legal situation of program derivatives varies throughout jurisdictions, which

supports the hypothesis of Nadan that there are possibilities of evading “copyleft” clauses.258

Another important legal controversy surrounding software licensing is the validity

and enforceability of various liability limitations and warranty disclaimers. This issue is not

specific to Open Source Movement; still, it may have bigger impact on its participants than

on proprietary developers because having to pay damages for defective software is

undoubtedly more burdensome for those who contribute their code for free. However, if the

licensors forget to expressly point out limitations and disclaimers to the users or draft them

carelessly, they may fall under liability regimes provided for in such laws as UCC, CISG or

258 See FN 250 and accompanying text.

110

various European consumer protection directives. Here, the black letter law may prevail over

otherwise brilliant economic and axiological arguments for upholding the licensor's

immunity.

The last issue discussed in this Chapter was the impact of software patents on Open

Source Movement. The analysis supports the argument that although there are considerably

more opponents to granting patents for software in this movement than anywhere else, it is

rather a case between the large and the small, regardless of their ideology or business model.

However, the conclusion for the purpose of this paper is that Open Source Movement does

not need patent protection, because it managed to develop and maintain remarkable software

projects without the use of it. More importantly, all this has been done by extending access

rights of third parties, preserving public interest and contradicting the hypothesis that more

private control is required for successful software development. Therefore, if Open Source

proves to be capable of sustaining its success, software patents will be considered

unnecessary.

The major purpose of this Chapter was to evaluate the validity and enforceability of

Open Source licenses and to answer the question whether they allow Open Source Movement

to realize its goals. Summing up, although there is legal uncertainty connected with this way

of licensing, the risk cannot be considered as substantially higher than the one surrounding

proprietary licenses; thus, all developers can only benefit from increasing their legal diligence

maybe even over the level of care they put into software design. The final conclusion as to

Open Source-specific legal controversies should be that the use of law by the movement is in

line with the doctrine of intellectual property laws and can even trigger the reconsideration of

some of the traditional premises as to what the black letter law should be.

111

CONCLUSION

The purpose of this paper as stated in the Introduction, was to observe, analyze and

comment on the reciprocal relation between Open Source Movement and law. This was done

by contributing towards two major debates currently taking place. Firstly, the one about the

role of law in the movement, in which also the questions about the theory and ideology of

intellectual property laws are considered. Secondly, the more detailed one, devoted to the

legal effect of Open Source licenses or their particular clauses faced with the laws of specific

jurisdictions.

The analysis started with a brief overview of the general rules for the protection and

use of computer programs, the presentation of the default legal system, its theoretical base

and practical application in the proprietary model. That constituted the necessary background

for the discussion on the very subject matter of the paper. Together with legal issues, the

economic, technical and social aspects of software market in general and of Open Source

Software development were analyzed. Therefore, the legal debate was put in the important

context of the rationales, ideology and interests of the parties involved. Nevertheless, the

paper focused on the legal issues in both theoretical and practical aspects.

All the conclusions and points made throughout the paper can be summarized as

follows. One of the first findings of this paper was that none of the regimes of legal

protection fits computer programs ideally. This conclusion was reached after confronting the

general framework of the legal protection of computer programs with their specific technical

and economic features. Although it should not be understood that all of the regimes described

are inherently bad for computer programs, it logically explains why software developers

undertake efforts to tailor the legal protection better through the use of private contracts –

112

licensing. The developers of proprietary software draft their licenses very restrictively and

additionally undertake efforts to secure for themselves the benefits of even stricter regime –

patents.

It was concluded that Open Source Movement should be confronted with proprietary

software, as it uses the law to the opposite of proprietary licensing. At the same time it is

clearly not correct to equate Open Source and public domain software. This is also because of

the active use it makes of intellectual property laws. But not only legal factors influence Open

Source Software. The movement has a rich and interesting history and it encompasses a wide

variety of software products. More importantly, it evolved from the cooperation between

individuals and social groups having diverse interests and motivations. The analysis of all

these factors led to the conclusion that the system designed by them is specific and unique.

As a whole, it remains remarkably flexible and allows the moral crusaders to spread their

idea, the pragmatists to profit from their marketing model and at the same time it protects the

users' from being deprived of their access rights and turned into passive consumers.

Although ethical norms and custom that evolved in the community form an

important element of the system, both moral and pragmatic goals of the participants in Open

Source Movement could not be realized without the use of law. This conclusion was reached

mainly after analyzing the content of model Open Source licenses, which grant the licensees a

broad scope of rights. Law is gaining even more importance in Open Source Movement

recently, as the developers organize themselves in more formal structures and provide for

quite sophisticated intellectual property rights management schemes. The analysis of this

specific system designed to protect and allow for the use of computer programs led to yet one

more conclusion that it does not conflict with the current theoretical and axiological

113

framework of intellectual property law, which tries to make up for the failures of public

goods markets by striking the right balance between private and public interests. Moreover,

the findings of this paper support the statement that not only the system for the protection of

Open Source Software withstands the scrutiny of intellectual property legal theory, but also it

may cause the reconsideration of arguments of proprietary developers calling for stronger

protection.

Additionally to the conclusion that Open Source Movement deserves protection, the

detailed analysis of relevant legal rules and doctrines of the U.S. and EU proved that current

legal systems discussed in this paper do indeed protect it to a great extent. Although there are

some controversies around the validity and enforceability of the licenses or their particular

clauses, many of them remain the basis for theoretical discussion only as there are simply

more incentives to comply than to infringe. Moreover, most of the legal threats pointed out in

this paper do not concern Open Source in particular, but have to be considered by proprietary

vendors as well. However, as it was already raised, the social value of Open Source

Movement requires to attribute a greater weight to all these threats and obliges the drafters of

licenses to a higher diligence. Therefore, the licensors should pay particular attention to

contract formation issues and secure for valid communications between the parties. Care

should also be taken while drafting “copyleft” clauses to clarify their scope and secure them

against diversities of national laws. Moreover, Open Source developers should take under

account the existence of default liability and warranty regimes under various jurisdictions if

they intend to maintain the cosmopolitan nature of their projects.

Given the breadth of the subject, its complex nature as well as social importance, all

of the conclusions hereto should be treated as the invitation to further research. It may focus

114

on the specific regulations of any given national jurisdiction, such as particular copyright or

contract law provisions and doctrines. For example, the important question not dealt with in

this paper is whether model Open Source licenses should be adjusted by translating them into

national legal languages. On the general level, the analysis of the relationship between Open

Source computer programs and law may definitely be continued because the system designed

for their legal protection and use is still evolving. Perhaps, the continuation of the

movement's success may trigger ideas to redraft intellectual property laws but even in the

current legal situation there is still much left to discuss.

115

BIBLIOGRAPHY

Authoritative Writings

Daniel J. M. Attridge, Challenging Claims! Patenting Computer Programs in Europe and the USA, 1

INTELLECTUAL PROPERTY QUARTERLY 22 (2001)

DAVID BAINBRIDGE, SOFTWARE COPYRIGHT LAW (Butterworths, London, Edinburgh, Dublin, 4th ed., 1999)

Lorin Brennan, Why Article 2 Cannot Apply to Software Transactions, 38 DUQUESNE LAW REVIEW 459

(2000)

M. Byrska, Prawne aspekty modyfikowania programu komputerowego [Legal aspects of modifying

computer program], 4 KWARTALNIK PRAWA PRYWATNEGO [PRIVATE LAW QUARTERLY] 693 (1996)

Trevor Cox, Chaos versus uniformity: the divergent views of software in the International Community,

4 VINDOBONA JOURNAL OF INTERNATIONAL COMMERCIAL LAW AND ARBITRATION 3 (2000)

Victoria A. Cundiff, Protecting Computer Software as a Trade Secret, in: 507 PRACTISING LAW INSTITUTE,

18TH ANNUAL INSTITUTE ON COMPUTER LAW 761 (February 1998)

Estelle Derclaye, Software Copyright Protection: Can Europe Learn from American Case Law? Part 1,

1 EUROPEAN INTELLECTUAL PROPERTY REVIEW 10 (2000); Part 2, 2 EUROPEAN INTELLECTUAL PROPERTY

REVIEW 56 (2000)

CHRIS DIBONA, SAM OCKMAN, AND MARK STONE, EDS., OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION

(O’Reilly, 1999)

Frank Diedrich, The CISG and Computer Software Revisited, 6 VINDIBONA JOURNAL SUPPLEMENT 55 (2002)

JOSEPH DREXL, WHAT IS PROTECTED IN A COMPUTER PROGRAM?: COPYRIGHT PROTECTION IN THE UNITED STATES AND

EUROPE (VCH Verlagsgesellschaft mbH, Weinheim, New York, 1994)

Garry L. Founds, Shrinkwrap and Clickwrap Agreements: 2B or not 2B?, 52 FEDERAL COMMUNICATIONS

LAW JOURNAL 99 (1999)

PAUL GOLDSTEIN, COPYRIGHT (Aspen Law & Business, New York, 2nd ed. 1998)

Robert W. Gomulkiewicz, De-bugging Open Source Software Licensing, 64 UNIVERSITY OF PITTSBURGH

LAW REVIEW 75 (2002)

Kevin W. Grierson, Enforceability of "Clickwrap" or "Shrinkwrap" Agreements Common in Computer

Software, Hardware, and Internet Transactions, 106 AMERICAN LAW REPORTS 5TH 309

Alois Valerian Gross, What is Computer “Trade Secret” under State Law, 53 AMERICAN LAW REPORTS 4TH

1046

Robert Hillman, Rolling Contracts, 71 FORDHAM LAW REVIEW 743 (2002)

Sean Hogle, Unauthorized Derivative Source Code, 18 No. 5 COMPUTER AND INTERNET LAWYER 1 (2001)

Dennis S. Karjala, Federal Preemption of Shrinkwrap and On-Line Licenses, 22 UNIVERSITY OF DAYTON

LAW REVIEW 511 (1997)

116

D. S. Karjala, Recent United States and International Development in Software Protection, Part 1, 1

EUROPEAN INTELLECTUAL PROPERTY REVIEW 13 (1994), Part 2, 2 EUROPEAN INTELLECTUAL PROPERTY

REVIEW 58 (1994)

Stephen T. Keohane, Mass Market Licensing, in: 652 PRACTISING LAW INSTITUTE, PATENT & TECHNOLOGY

LICENSING 2002 269 (2002)

Irene Kosturakis, Software Licensing and UCITA, in: 762 PRACTISING LAW INSTITUTE, UNDERSTANDING THE

INTELLECTUAL PROPERTY LICENSE 2003 437 (2004)

Mark A. Lemley, Beyond Preemption: The Law and Policy of Intellectual Property Licensing, 87

CALIFORNIA LAW REVIEW 111 (1999)

Mark A. Lemley, The Economics of Improvement in Intellectual Property Law, 75 TEXAS LAW REVIEW 989

(1997)

LAWRENCE LESSIG, THE FUTURE OF IDEAS: THE FATE OF THE COMMONS IN A CONNECTED WORLD (Random House, New

York, 2001)

IAN J. LLOYD, INFORMATION TECHNOLOGY LAW (Butterworths, London, Edinburgh, Dublin, 3rd ed., 2000)

Axel Metzger, Till Jaeger, Open Source Software and German Copyright Law, 32 IIC INTERNATIONAL

REVIEW OF INDUSTRIAL PROPERTY AND COPYRIGHT LAW 52 (2001)

Arthur R. Miller, Copyright protection for computer programs, databases, and computer-generated

works: is anything new since CONTU?, 106 HARVARD LAW REVIEW 977 (1993)

ERIK MOSESSON ED., SOFTWARE PROCUREMENT NORDIC YEARBOOK OF LAW AND INFORMATICS 1992 (Norstedts

Juridik, Stockholm, 1992)

Christian H. Nadan, Open Source Licensing: Virus or Virtue? 10 TEXAS INTELLECTUAL PROPERTY LAW

JOURNAL 349 (2002)

KENNETH NICHOLS, INVENTING SOFTWARE: THE RISE OF “COMPUTER-RELATED” PATENTS (Quorum Books, Westport,

1998)

RAYMOND T. NIMMER, THE LAW OF COMPUTER TECHNOLOGY (West Group, rev. ed. 1999)

Raymond T. Nimmer, Breaking Barriers: The Relations Between Contract and Intellectual Property

Law, 13 BERKELEY TECHNOLOGY LAW JOURNAL 827 (1998)

A. NOWICKA, PRAWNOAUTORSKA I PATENTOWA OCHRONA PROGRAMÓW KOMPUTEROWYCH [COPYRIGHT AND PATENT

PROTECTION OF COMPUTER PROGRAMS] (Dom Wydawniczy ABC, Warszawa, 1995)

A. Samuel Oddi, An Uneasier Case for Copyright than for Patent Protection of Computer Programs, 72

NEBRASKA LAW REVIEW 351 (1993)

Christopher L. Ogden, Patentability of Algorithms After State Street Bank: The Death of the Physicality

Requirement, No. 10 Vol. 82 JOURNAL OF PATENT AND TRADEMARK OFFICE SOCIETY 721 (2000)

Shawn W. Potter, Opening Up to Open Source, 6 RICHMOND JOURNAL OF LAW AND TECHNOLOGY 24 (2000)

117

Carey R. Ramos, David S. Berlin, Three Ways to Protect Computer Coftware, 16 No. 1 COMPUTER

LAWYER 16 (1999)

DIANE ROWLAND, ELIZABETH MACDONALD, INFORMATION TECHNOLOGY LAW (Cavendish Publishing Ltd, London,

Sydney, 2nd ed., 1997)

Pamela Samuelson et. al., A Manifesto Concerning The Legal Protection Of Computer Programs,

COLUMBIA LAW REVIEW, December 1994, at 2308

Daniele Schiuma, TRIPS and Exclusion of Software “as Such” from Patentability, No.1 Vol. 31 IIC

INTERNATIONAL REVIEW OF INDUSTRIAL PROPERTY AND COPYRIGHT LAW 36 (2000)

Yannis Skulikaris, Software-Related Inventions and Business-Related Inventions; A review of practice

and case law in U.S. and Europe, PATENT WORLD, February 2001, at 26.

RICHARD M. STALLMAN, FREE SOFTWARE, FREE SOCIETY: SELECTED ESSAYS OF RICHARD M. STALLMAN (GNU Press,

Boston, 2002)

Peter Toren, Software and Business Methods are Patentable in the U.S. (Get over it), PATENT WORLD,

September 2000, at 7

R C Tripathi et al., Patenting of Computer Software: Status and Approach, Vol. 7 JOURNAL OF

INTELLECTUAL PROPERTY RIGHTS 128 (2002)

Julian Velasco, The copyrightability of non-literal elements of computer programs, COLUMBIA LAW

REVIEW, January 1994, at 242

F. Warren-Boulton et. al., Economics of intellectual property protection for software: The proper role

for copyright, 3 no. 2 STANDARD VIEW 68 (June 1995)

ROBERT YOUNG & WENDY GOLDMAN ROHM, UNDER THE RADAR: HOW RED HAT CHANGED THE SOFTWARE BUSINESS –

AND TOOK MICROSOFT BY SURPRISE (Coriolis Group Books, Scottsdale, Arizona 1999)

Authoritative Writings – Internet Sources

Agency for the development of electronic administration (ADAE), Guide to Choosing and Using Free

Software Licenses for Government and Public Sector Entities, available at:

http://www.adae.gouv.fr/upload/documents/free_software_guide.pdf

The Apache Software Foundation, About the Apache HTTP Server Project, available at:

http://httpd.apache.org/ABOUT_APACHE.html

The Apache Software Foundation, Home Page, available at: http://www.apache.org/

The Apache Software Foundation, How the ASF works, available at:

http://www.apache.org/foundation/how-it-works.html

Piotr Bolek, Forum Rozwoju Wolnego Oprogramowania [Forum for the Free Software Development],

available at: http://frwo.linux.org.pl/ (in Polish)

118

CISG-AC, Opinion no. 1, Electronic Communications under CISG, 15 August 2003, available at:

http://www.cisg.law.pace.edu/cisg/CISG-AC-op1.html

Debian Documentation Team, A Brief History of Debian, available at:

http://www.debian.org/doc/manuals/project-history/

European Communities, Europa – Information Society – Free & Open Source Software – Introduction,

available at: http://europa.eu.int/information_society/activities/opensource/index_en.htm

Foundation for Free Information Infrastructure, Software Patents in Europe: A Short Overview,

available at: http://swpat.ffii.org/lisri/intro/index.en.html

Free Software Foundation, Frequently Asked Questions about the GNU GPL,

http://www.fsf.org/licenses/gpl-faq.html

Free Software Foundation, Various Licenses and Comments about Them, available at:

http://www.fsf.org/licenses/license-list.html

Eben Moglen, Free Software Matters: Enforcing the GPL, I, available at:

http://moglen.law.columbia.edu/publications/lu-12.html

Eben Moglen, Free Software Matters: Enforcing the GPL, II, available at:

http://emoglen.law.columbia.edu/publications/lu-13.html

The Mozilla Organization, Mozilla Roles and Responsibilities, available at:

http://www.mozilla.org/about/roles.html

The Mozilla Organization, mozilla.org License Policy, available at: http://www.mozilla.org/MPL/license-

policy.html

Netscape, Netscape Announces Plans to Make Next-Generation Communicator Source Code,

available at: http://wp.netscape.com/newsref/pr/newsrelease558.html

Netscape, Netscape Launches Aggressive 'Unlimited Distribution' Program For New Free Client

Software, available at: http://wp.netscape.com/newsref/pr/newsrelease560.html

Open Source Initiative, The Open Source Definition, available at:

http://www.opensource.org/docs/definition.php

Open Source Initiative, Frequently Asked Questions, available at:

http://www.opensource.org/advocacy/faq.php

Open Source Initiative, History of the OSI, available at: http://www.opensource.org/docs/history.php

Open Source Initiative, Open Source Case for Business, available at:

http://www.opensource.org/advocacy/case_for_business.php

Open Source Initiative, The Open Source Case for Customers, available at:

http://www.opensource.org/advocacy/case_for_customers.php

Open Source Initiative, The Open Source Case for Hackers, available at:

http://www.opensource.org/advocacy/case_for_hackers.php

119

Open Source Risk Management, Results of First-Ever Linux Patent Review Announced, available at:

http://www.osriskmanagement.com/press_release_080204.pdf

Open Source Technology Group, SourceForge.net: Software Map, available at:

http://sourceforge.net/softwaremap/trove_list.php?form_cat=14

Bruce Perens, Software Patents v. Free Software, available at: http://perens.com/Articles/Patents.html

Daniel B. Ravicher, Patents – Why Free / Open Source Software Might Have Less to Fear than Non-

Free Software, available at: http://www.groklaw.net/pdf/Patents.pdf

Eric S. Raymond, Homesteading the Noosphere, available at:

http://www.catb.org/~esr/writings/cathedral-bazaar/homesteading/

Eric S. Raymond, The Magic Cauldron, available at: http://www.catb.org/~esr/writings/cathedral-

bazaar/magic-cauldron/

Larry Rosen, The Unreasonable Fear of Infection, available at: http://rosenlaw.com/html/GPL.PDF

Software in the Public Interest, Debian Social Contract, available at:

http://www.debian.org/social_contract.en.html

Richard M. Stallman, How to fight software patents - singly and together, available at:

http://www.newsforge.com/article.pl?sid=04/09/09/1612239

Sun Microsystems, Contributing to OpenOffice.org, available at:

http://www.openoffice.org/contributing.html

Sun Microsystems, download: Download Central, http://download.openoffice.org/1.1.2/index.html

Sun Microsystems, FAQs, available at: http://www.openoffice.org/FAQs/faq-licensing.html

Sun Microsystems, License Page, available at: http://www.openoffice.org/license.html

Sun Microsystems, OpenOffice.org 1.1 Product Description, available at:

http://www.openoffice.org/product/

Linus Torvalds, Note to Linux Kernel, available at: http://www.linux.de/linux/gnu.html

Harald Welte, netfilter project GPL settlement with Securepoint, available at:

http://www.netfilter.org/news/2004-03-25-securepoint-gpl.html

werk21, Bundestux – Pinguine ins Amt! [Bundestux – Penguins to the Office!], available at:

http://www.bundestux.de/

International Legal Documents

Berne Convention for the Protection of Literary and Artistic Works (1886, Paris Act of 1971)

Convention on the Law Applicable to Contractual Obligations (Rome Convention, 1980)

European Patent Convention (1973)

Guidelines for Examination at the European Patent Office (2003)

120

UN Convention on the International Sale of Goods (CISG, Vienna Convention, 1980)

WIPO Copyright Treaty (1996)

WIPO Model Provisions on the Protection of Computer Software (1978)

WTO Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS) (1994)

American Legal Documents

Constitution of the United States of America

Copyright Act of the United States of America, 17 U.S.C. Sec. 101-1332 (1976, as amended)

Uniform Commercial Code

Uniform Computer Information Transactions Act (Approved Official Draft), available at:

http://www.law.upenn.edu/bll/ulc/ucita/2002final.htm

Legal Documents of European Union

Directive on certain aspects of the sale of consumer goods and associated guarantees, 1999/44/EC,

OJ L 171, 07/7/1999 P. 12

Directive on certain legal aspects of information society services, in particular electronic commerce, in

the Internal Market (E-Commerce Directive), 2000/31/EC, OJ L 178, 17/07/2000, P. 1

Directive on the approximation of the laws, regulations and administrative provisions of the Member

States concerning liability for defective products, 85/374/EEC, OJ L 210, 07/08/1985 P. 29

Directive on the legal protection of computer programs, 91/250/EEC, OJ L122, 17/05/1991 P. 42

Directive on the protection of consumers in respect of distance contracts, 97/7/EC, OJ L 144,

04/06/1997, P. 19.

Directive on unfair terms in consumer contracts, 93/13/EEC, OJ L 095, 21/04/1993 P. 29

Proposal for the Directive on the legal protection of computer programs, COM (88) 816 final – SYN

183 [1989] OJ C91/9

Proposal for the Directive on the patentability of computer-implemented inventions, 6580/02 PI 10

CODEC 242

Regulation on the application of Article 81(3) of the Treaty to categories of technology transfer

agreements (Technology Transfer Regulation), 2004/772/EC, OJ L 123, 27/04/2004, P. 11

121

Other Legal Documents

Apache License Version 2.0, available at: http://www.apache.org/licenses/LICENSE-2.0

BSD License, available at: http://www.xfree86.org/3.3.6/COPYRIGHT2.html

GNU General Public License, Version 2.0, available at: http://www.fsf.org/licenses/gpl.txt

GNU Lesser General Public License, Version 2.1, available at: http://www.fsf.org/copyleft/lesser.txt

Individual Contributor License Agreement (Apache), available at:

http://www.apache.org/licenses/cla.txt

Mozilla Public License (Annotated Version 1.1), available at: http://www.mozilla.org/MPL/MPL-1.1-

annotated.html

OpenOffice.org Open Source Project Joint Copyright Assignment by Contributor, available at:

http://www.openoffice.org/licenses/jca.pdf

Sun Industry Standards Source License – Version 1.1, available at:

http://www.openoffice.org/licenses/sissl_license.html.

122

TABLE OF CASES

American Cases

Adobe Systems, Inc. v. One Stop Micro, Inc. 84 F. Supp.2d 1086 (N.D. Cal. 2000).

Apple Computer, Inc. v. Franklin Computer Corp. 714 F.2d 1240 (3d Cir.1983), cert. dismissed 464

U.S. 1033 (1984).

Architectonics, Inc. v. Control Systems, Inc. 935 F. Supp. 425 (S.D. N.Y. 1996).

Berthold Types Ltd. v. Adobe Systems, Inc. 101 F. Supp.2d 697 (E.D. Ill 2000).

Brown Bag Software, Inc. v. Symanthec Corp. 960 F 2d 1465 (9th Cir 1992).

Caspi v. Microsoft Network L.L.C. 732 A.2d 528 (N.J. Super Ct. App. Div. 1999), cert. denied, 743

A.2d. 851 (1999).

CMS Software Design Sys., Inc. v. Info Designs, Inc. 785 F.2d 1246 (5th Cir.1986).

Computer Associates, Inc. v. Altai, Inc. 982 F.2d 693 (2nd Cir 1992).

EF Cultural Travel BV v. Zefer Corp. 2003 U.S. App. LEXIS 1336 (1st Cir. 2003).

Hines v. Davidowitz, 312 U.S. 52, 67 (1941).

Hotmail Corp. v. Van$ Money Pie, Inc. 47 U.S.P.Q.2d 1020 (N.D. Cal 1998).

I.LAN Systems, Inc. v. Netscout Service Level Corp. 183 F.Supp.2d 328 (D. Mass. 2002).

Lasercomb America, Inc. v. Reynolds 911 F.2d 970 (4th Cir. 1990).

Lotus Development Corp. v. Paperback Software Int. 740 F. Supp. 37 (D. Mass. 1990).

M.A. Mortenson Co. v. Timberline Software Corp. 970 P.2d 803 (Wash. Ct. App. 1999), aff'd, 998 P.2d

305 (Wash. 2000).

Microstar v. Formgen, Inc. 942 F. Supp. 1312 (S.D. Cal. 1996), aff'd in part, rev'd in part, 154 F.3d

1107, 48 U.S.P.Q.2d (BNA) 1026 (9th Cir. 1998).

Novell, Inc. v. Network Trade Center, Inc. 25 F. Supp. 2d 1218 (D. Utah 1997).

Planetary Motion, Inc. v. Techsplosion, Inc. 261 F.3d 1188 (11th Circ. (Fla.), 2001).

ProCD, Inc. v. Zeidenberg 86 F.3d 1447 (7th Cir. 1996).

Progress Software Corp. v. MySQL AB 195 F. Supp. 2d 328 (D. Mass. 2002).

Register.com, Inc. v. Verio, Inc. 2004 WL 103400, 69 U.S.P.Q.2d 1545 (C.A.2 (N.Y.), 2004).

SCO Group, Inc., The v. International Business Machines, No. 2:03cv0294 (Plaintiff's Amended

Complaint) (D. Utah, filed June 16, 2003).

Softman Products Co., LLC v. Adobe Systems, Inc. 171 F. Supp. 2d 1075 (C.D. Cal. 2001).

Sony Corp. of Am. v. Universal City Studios, Inc. 464 U.S. 417 (1984).

Specht v. Netscape Communications Corp. 306 F.3d 17 (2nd Cir. (N.Y.) 2002).

State Street Bank & Trust v. Signature Financial Services, 149 F.3d 1368 (Fed. Cir. 1998), cert.

denied 119 S.Ct. 851, (1999).

123

Step-Saver Data Sys., Inc. v. Wyse Tech. 939 F.2d 91 (3d Cir. 1991).

Storm Impact, Inc. v. Software of the Month Club, 13 F.Supp. 2d 782 (N.D. Ill. 1998).

Ticketmaster Corp. v. Tickets.com, Inc. 54 U.S.P.Q.2d (BNA) 1344 (C.D. Cal. 2000).

Unix System Laboratories v. Berkeley Software Design, Inc. 1993 Copr.L.Dec. P 27,075, (27

U.S.P.Q.2d 1721); 1993 Copr.L.Dec. P 27,166, (86 Ed. Law Rep. 738, 29 U.S.P.Q.2d 1561).

Whelan Associates, Inc. v. Jaslow Dental Laboratory Inc. 797 F.2d 1222 (3d Cir. 1987).

Williams Electronics, Inc. v. Artic International, Inc. 685 F.2d 870 (3d Cir. 1982).

German Case

Landgericht München, 19.5.2004, 21 O 6123/04.

European Patent Office

International Business Machines, Corp./Computer program product, Decision of Technical Board of

Appeal 3.5.1 dated 1 July 1998, T 1173/97 (OJ 10/1999, 609)

124

